当工业MCU/SoC开始增加AI单元
从上述解决方案的实例来看,AI如何部署似乎还不够明朗。我们尝试往下看解决方案底层的硬件支持。不难想见,上层AI应用需求自然能够带动下层AI芯片或专核的兴盛,比如工业现场生产用机械臂或电机内部的MCU/SoC——毕竟我们反复在说AI这一技术热点是贯彻在整个垂直行业的。
常规能够想到的AI专核通常是具备高度并行计算能力+片上存储+低精度计算的ASIC核心,尤其如果是特别针对某个具体的工业应用场景。不过行业内颇具代表性的瑞萨电子DRP(Dynamic Reconfigurable Processor)技术,或称e-AI(嵌入式AI,DRP是e-AI技术的一部分)在思路上还略有不同。这里还是先举个例子。
在图3故障预判解决方案中,工业制造现场电机运行时,可通过加速度传感器来采集电机运行振动情况,这些采集的数据上传到云服务器,经由云服务器的学习软件做深度学习(基于谷歌TensorFlow神经网络架构);再由解释器将高级语言AI模型翻译成MCU可识别的机器语言,AI控制软件将AI模型下载到本地e-AI单元,实现故障预判。
这套系统监测的是电机运行情况,并可预测其剩余使用寿命,属于相当典型的AI预测性维护使用场景。在这一例中,由于硬件的具象化,我们得以更清晰地理解预测性维护的流程是什么样。瑞萨电子中国工业自动化事业部高级总监徐征告诉我们,除了预测性维护,e-AI还能用于异常检测,提高质量,自动化检验。
“我们已经在一些工业生产现场取得验证性测试结果,比如瑞萨电子那珂工厂,GE医疗(日本)日野工厂。那珂工厂的验证测试结果表明,以下三点在智慧工厂中是完全可行的:
- 使用AI识别异常结果。通过为复杂波形设置阈值,消除难点。
- 显著减少错误信息,从每月每台机器大约50条错误信息降低为零,消除工程师负担。
- 准确检测异常结果。通过使用高分辨率数据,将异常结果检测率提高6倍以上。”
在我们的理解中,DRP在专用和通用,或者在性能和可编程性之间是个相对折中的方案。从结构上来看,这种动态可重构处理器包含可编程数据通道硬件(PE处理单元阵列)和状态转换控制器(完全可编程有限状态机),是十分典型的软件定义芯片(图4),可针对工业嵌入式设备的AI推理(inference)做加速。
“算法的种类和大小可由同一个DRP硬件进行时间复用处理。其灵活性非常适用于AI产业的DNN(深度神经网络)的快速演化。”徐征表示,“DRP可对硬件资源和应用场景做动态调整,做并发处理,帮助在后台做很多场景的匹配和预处理。”例如对可动态加速图像处理算法,达到相比通用CPU快10倍的速度。
类似DRP这类AI硬件的出现,及在兼顾弹性基础上对性能的追逐,实际都是智能制造开始全面步入AI的第一步。
在瑞萨电子的设想里,“首先会提供附加AI单元的解决方案以拓展市场,从而使e-AI实用性得到市场广泛理解,再推进工业终端设备e-AI预安装解决方案普及。”徐征说。这段话大概是瑞萨电子推广工业AI芯片的策略,但或许还能表明,智能制造和数字工厂的AI仍处在新生期,所以前期提供的是“附加AI单元”解决方案。
从宏观到微观世界的数字复刻
而从MCU/SoC的高度继续再往下层或供应链上层走,是EDA厂商。主流EDA厂商目前最特别的存在应该就是Mentor了:这家公司在被西门子并购以后,划归西门子的“数字工厂(Digital Factory)”业务旗下,且愈发看重“工业软件领域”的竞争力,而不只是以前那个,帮助系统与IC设计企业进行高级印刷电路板和芯片设计的EDA厂商。
西门子当年收购Mentor的业务逻辑一直被人多番揣测。Mentor中国区总经理凌琳在接受采访时表示:“我们绝大部分客户,都同时使用机械和电子工具来设计、制造产品。为了让机电一体化产品的设计、工程和制造更高效,一个集成性的软件平台就很重要。”西门子Mechatronics就是连接了机械和电子领域的解决方案。
西门子给予Mentor的投入,另外包括针对更多EDA相关企业的进一步收购,如Sarakol、Infolytica、Austemper等,显然是对上述策略的进一步补全。好比Infolytica在低频电磁模拟,包括电动马达、发电机和电磁设备设计支持方面的能力。所以凌琳说“电子设计、机械设计领域的协同”,“提供了整个闭环的系统设计。”其中的业务逻辑也变得一目了然。这是Mentor受西门子影响之时,践行“工业化之路”的代表。
用时下比较流行的话来说即数字复刻版(或称数字孪生,digital twin)。这个词更像是个营销词汇,EDA的仿真、验证原本就属于典型的“数字复刻版”,是在芯片制造之前的数字复刻,只不过它是对微观世界的复刻。西门子收购Mentor以后的复刻,则既包含宏观世界的机械设计,也包含电子设计。在这套“闭环系统“中打造的数字复刻版,包含了整个生产环境或价值链:产品本身、产品的制造和性能,以及产品制造流程的完整复刻。在生产或制造前期,就对数字世界的产品、机器和设施设备进行仿真与优化,确保后续真实世界的制造生产。
西门子2018财年数字工厂业务营收129.32亿欧元,同比增长11%;西门子PLM技术软件(现已更名为西门子数字工业软件)一年营收约在42亿美元左右。无论是西门子的“数字工厂”,还是西门子数字工业软件公司,都能表征工业4.0带来的经济效益,似乎比单纯的EDA业务更有协同优势。不过也正因如此,Mentor的EDA厂商角色定位,令其在工业4.0+AI方面更具发言权。
在机器学习IP方面,Mentor提供Catapult HLS AI/ML设计套装,帮助芯片架构师和设计师理解如何利用机器学习算法,以及构建起低功耗的硬件加速器。它能够展示如何将数字工具或DNN框架开发的算法,转为可综合(synthesizable)C/C++/SystemC代码,并最终综合为RTL芯片硬件设计语言。中间环节展示哪部分算法在处理器上执行更高效,以及若执行于IC专用硬件单元则能效比会是如何。
这类方案是对AI应用大门的进一步拓宽,或许HLS高层次综合不仅代表了Mentor的策略,它更像是AI在各领域实现普及的趋势,包括工业制造。当然在此过程中,少不了应用层做验证,包括协同建模(co-modeling)、Virtual-ICE、SW debug、性能监测应用等各种应用验证技术。
除此之外,机器学习本身也在反哺EDA工具,比如在芯片测试期间,Tessent Yield Insight能够告诉客户和工厂,影响产量的错误究竟是出现在芯片设计环节还是制造环节;还有利用机器学习提升芯片良率的Calibre Machine Learning OPC(机器学习邻近效应修正)和Calibre LFD with Machine Learning;甚至利用半导体制造数据,来反馈设计优化流程方案,“比如说,同时采用X光和AOI(自动光学检测)的时候,我们可以判断哪些层级X光可以略过,因为X光是个慢速机器,经常会成为制造瓶颈。”