运算放大器无处不在,它源于模拟计算机时代,有着悠久的历史,现在已经成为模拟电子领域的标志性产品。为什么运算放大器如此受欢迎?未来哪些产品可能取代运算放大器?

教科书中如此解释:因为增益非常非常高,在这个神奇的求和节点/虚拟接地上从来没有任何显著的电压变化,所以输入电压被精确地转换成与之成比例的电流,而被称为“透过OPA接地”的输出也同样精确。这是一个很诱人的概念,但它并不完全正确。与「所有的求和电流」有关的部份没什么问题,因为OPA的输入电流通常可以忽略不计,即使在频率非常接近f1时也是如此;可以归结为输入电容的量极少。而且,即使是一个适度分流的输入电阻(比如1MΩ)也不算很大问题。

那么,问题出在哪里呢?简单地说,有限的AC开回路增益要求输入端有一定的有限电压,这意味着“虚拟接地”不过是一个节点,在这个节点上,每当输入端有任何变化时,都必定存在一个可能引发问题的适当的电压。为了理解这种观点离理想状态有多遥远,我们不妨考虑一下用于将DAC的输出电流转换为电压的OPA,也就是经典的跨阻抗功能。我们把扩展这个功能的反馈电阻当做RF。现在将运算放大器模拟为一个积分电路(这一步必须做),并考虑与电流阶跃对应的“虚拟接地”的电压摆幅。一开始,运算放大器的输出保持不变;其初始响应类似斜坡,在放大器执行VOUT = -VIN/sT1运算时出现。在本例中,VIN是什么?它其实就是DAC输出电流阶跃(称为IDAC)乘以反馈电阻RF。在IDAC = 2mA、RF = 5kΩ(最终输出为10V)这种典型示例中,输入阶跃也是10V!

当OPA输出在输入端对整个最终值的“误差电压”进行积分的时候,误差按单纯由单位增益频率决定的速率呈指数下降,即基于T1时间常数。在这段时间内,反向节点远非是一个“虚拟接地”,相反地在本例中电压上升到最高输出值10V,然后回落到接近零。在实际应用中,实际电压会低于这个值,因为输入晶体管总是会发生发射极-基极击穿(在回转期间,DAC也经常会限制电压摆幅)。

有时候,OPA的输入端可能包含一个“二极管盒”(box of diode),以针对如此大的输入提供保护。有时会在电路板上增加萧特基二极管,以“优化加速”。这种二极管能够改善这种情况吗?嗯,它们肯定可以防止输入二极管因为长时间接触反向偏置(瞬变或持续)导致的beta下降,但实际上它们无法加快运算放大器的稳定,原因很多:现在我们不再采用大误差电压,而是将VIN限制在几百毫伏以内,而且,输出端的dV/dt成比例下降至约原速率的1/20。

输出接地在哪里?

似乎很少有运算放大器用户会关注输出地位于何处。大多数放大器并没有名为“输出地”的接脚。那么,它到底在哪里?使用夏洛克·福尔摩斯(Sherlock Holmes)的排除法,最后发现,它应该是其中一个电源接脚,或者两个都是!事实就是如此。

经典OPA包括一个gm级,然后是一个电流镜,其(单边)电流被积分到芯片电容Cc,通常被称为“HF补偿电容”(HF Compensation Cap)。特征时间常数T1由商Cc/gm(和按这种方式构建的现代滤波器一样)和f1 = gm/2pCc组成。现在,许多OPA都使用所谓的密勒积分器(Miller Integrator)拓扑,在这种拓扑中,这个重要的电容通常连接在一条实际的电源线(在npn实施示例中,通常是VNEG)和输出之间。所以,放大器的AC输出参考电压源实际上就是这条电源线。如果它有噪声,或由于任何原因产生各种其他噪声,所有这些电压都会出现在输出端。

编译:Jenny Liao  责编:Yvonne Geng

(参考原文:Op amp myths by Barrie Gilbert,by Barrie Gilbert)

 

阅读全文,请先
您可能感兴趣
金刚石以其优异的性能而闻名,长期以来一直有望应用于各种领域,但其作为半导体的潜力却一直面临着商业化的障碍。Advent Diamond公司在解决关键技术难题方面取得了长足进步,特别是制造出了掺磷的单晶金刚石,从而形成了n型层。
CEA-Leti现已宣布启动FAMES项目,这是一条全耗尽绝缘体上硅(FD-SOI)试验线,用于非易失性嵌入式存储器、3D集成、射频元件和电源管理IC等应用,以确保欧洲主权。在FAMES试验线启动之际,笔者对CEA-Leti首席技术官Jean-René Lèquepeys进行了独家专访。
在这份榜单中,国家电网有限公司以5459亿美元的营收连续多年稳居榜首,而京东集团则以卓越的表现成为排名最高的大陆民营企业。
台积电(TSMC)公布了最新的A16芯片制造工艺,改变了技术领先者的游戏规则。该工艺可能领先英特尔的18A节点。但目前还不清楚哪家公司将赢得工艺技术冠军。
希荻微表示,通过吸收Zinitix成熟的专利技术、研发资源和客户资源,可以快速扩大其产品品类,特别是在手机和可穿戴设备等领域的技术与产品布局。此外,Zinitix的摄像头自动对焦芯片产品线与希荻微现有的音圈马达驱动芯片产品线有较强的协同性。
关于英诺赛科与宜普公司的两项包括氮化镓技术在内的专利侵权案有了最终判决。美国国际贸易委员会的裁定结果是,英诺赛科侵权宜普公司的其中一项专利。 不过英诺赛科并不同意该判决,判决中提到的英诺赛科侵权EPC的294专利 ,英诺赛科认为,EPC的294专利是无效的。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
点击蓝字 关注我们德州仪器全球团队坚持克服挑战,为电源模块开发新的 MagPack™ 封装技术,这是一项将帮助推动电源设计未来的突破性技术。  ■ ■ ■作为一名经验丰富的马拉松运动员,Kenji K
在德国柏林举行的IFA 2024上,AMD计算和图形业务集团高级副总裁兼总经理Jack Huynh宣布,公司将把以消费者为中心的RDNA和以数据中心为中心CDNA架构统一为UDNA架构,这将为公司更有
在当今人工智能飞速发展的时代,AI Agent正以其独特的方式重塑着企业的生产运营方式。澜码科技作为AI Agent领域的先行者,其创始人兼CEO周健先生分享了对大模型与AI Agent发展现状的深刻
‍‍‍‍上市PCB厂商竞国(6108)日前出售泰国厂给予陆资厂胜宏科技后,近日惊传台湾厂惊传12月前关厂,并对客户发布通知预告客户转移生產,最后出货日期2024年12月25日。至於后续台湾厂400名员
疫情后的劳动力囤积和强有力的员工保护规则掩盖了德国高薪制造业工作市场令人担忧的变化。根据联邦劳工办公室的数据,欧元区最大经济体德国的失业率在2019年春季曾达到历史最低点4.9%,现已上升至6%。虽然
8月28-30日,PCIM Asia 2024展在深圳举行。“行家说”进行了为期2天的探馆,合计报道了200+碳化硅相关参展企业(.点这里.)。其中,“行家说”还重点采访了骄成超声等十余家企业,深入了
8月28-30日,PCIM Asia 2024展在深圳举行。“行家说”进行了为期2天的探馆,合计报道了200+碳化硅相关参展企业(.点这里.)。其中,“行家说”还重点采访了长飞先进等众多企业,深入了解
在苹果和华为的新品发布会前夕,Counterpoint公布了2024年第一季度的操作系统详细数据,数据显示, 鸿蒙操作系统在2024年第一季度继续保持强劲增长态势,全球市场份额成功突破4%。在中国市场
9月6日,“智进AI•网易数智创新企业大会”在秦皇岛正式举行,300+企业高管及代表、数字化技术专家齐聚一堂,探讨当AI从技术探索迈入实际应用,如何成为推动组织无限进化的新引擎。爱分析创始人兼CEO金
随着汽车智能化升级进入深水区,车载ECU(域)以及软件复杂度呈现指数级上升趋势。尤其是多域、跨域和未来的中央电子架构的普及,以及5G/V2X等车云通信的增强,如何保障整车的信息与网络安全,以及防范外部