运算放大器无处不在,它源于模拟计算机时代,有着悠久的历史,现在已经成为模拟电子领域的标志性产品。为什么运算放大器如此受欢迎?未来哪些产品可能取代运算放大器?

几年前,我曾经代表ADI前往米兰参加一场研讨会,但在从斯德哥尔摩飞往米兰的航段,我的行李遗失了。我穿着在意大利新买的衣服,没有幻灯片可展示,尴尬地面对众多付费观众。我向他们保证,等到午餐之后事情应该就会顺利解决了,因此决定只跟他们谈谈“运算放大器”(op amp),介绍一下这些组件本身的限制,让大家对这些“知名”的放大器有更深入的了解。有人递给我几张白纸和一支黑色马克笔,我们于是开始探索这片“未知水域”。

我首先问:“谁用过运算放大器?”差不多每个人都举起了手,很多人带着一丝苦笑,其中混杂着自信地笑声。然后我接着问:“为什么要用放大器?”大厅里顿时鸦雀无声,笑容似乎也在瞬间凝结了。过了几秒后,有人试着回答:“因为有许多的运算放大器可供选择。”我承认,的确是这样。另一个人回答说:“它们很便宜!”这也没错,这些运算放大器在解决目前的问题时具有极好的价值。最后,有些人鼓起勇气说:“它们有很高的增益!”这才是我想要的答案!因为在几乎所有的运算放大器应用中,这句话看似并不正确,事实上,这却是对于运算放大器的一种“迷思”(myth)。现在让我们来谈谈这个问题吧!

“运算放大器”无处不在,它源于模拟计算机时代,不仅有着悠久的历史,如今也已经成为模拟电子领域的经典象征。它的名字是如此地平凡,让我们很少静下心来思考它所代表的含义,更不会想到它还有一款相对的组件称为“非运算放大器”(non-op amp)。“非运算放大器”顾名思义即“不进行运算的放大器”。可能有许多放大器并不像其他一样基于“运算放大器典范”,而是从单个晶体管单元开始——这些晶体管在某些专用领域的性能可能优于运算放大器,例如适合射频(RF)应用的低噪声放大器(LNA),并且包括一些基本的变体,例如电流反馈和主动反馈组件。

本文先提出一个问题:“为什么运算放大器如此受欢迎?”随后将探讨如果不透彻了解无处不在的运算放大器,可能导致哪些鲜为人知的问题。未来,我还将在后续文章中探讨未来几年可能取代运算放大器的产品,包括电流反馈类型,以及取代精确低失真、宽带、电压模式放大的新解决方案。

选择和理想

如今,系统设计人员可以在众多不同种类的所谓“传统”单芯片运算放大器中进行选择——这类组件具有差分高阻抗输入,支持小电压VIN,以及在VOUT = AVIN出现时实现单侧(或者看似如此)低阻抗输出,由此通常认为放大因子A非常大。我们称这种放大器为OPA;至于其它类型,例如TZA和AFA,我们将在后续专栏中介绍。

每个OPA都有其特殊的性能,例如只提供几个飞安培(fA)的偏置电流(通常称为静电计级运算放大器);或者提供超低偏置电压(即所谓的“仪表级运算放大器”,不要与“仪表放大器”混淆了——这通常指固定增益差分输入放大器);或者具有极低噪声(包括不稳定以及烦人的低频率噪声,称为1/f);或者具有宽带宽,同时具有高压摆率时比较有用(虽然并不太需要);或者支持小功率运行,有时采用非常低的电源电压;或者能够将大功率驱动到负载等等。每一种OPA都展现了一组强大的优化标准,当然,没有任何一种设计是通用的。
OPA为何应用如此广泛?是否可以将部分原因归结为推广或促销?它独特的优势——近乎“万灵丹”的万能特性难道只是一种“迷思”吗?显然不是;但是,它未必始终具备其所享誉的精确度。如果你打开大多数有关运算放大器的教科书,你会发现讨论总是以所谓的“理想特性”开始,它一开头总是这样的:

• 无限增益
• 无限带宽
• 毫无延迟

坦白说,即使是在传统的应用中,我也不知道如何使用这样的放大器,简单说就是因为这些放大器永远不会稳定下来——即使OPA中绝对没有增益和相位误差。事实上,正是基于这一点才获得高精度。不妨考虑一下实现单位增益反相放大器的简单反馈电路。在实际建置中,从输出到反相端的实体电阻具有分布电阻和电容,并且具有相当复杂的增益/相位特性。尽管这种特征时间常数非常小,通常是皮秒(ps),但如果放大器确实能在超出关键限值范围以外的频率实现真正的平坦增益,那么它们绝对不稳定。我们可以透过快速模拟来展现这种可能性。当然,这是个学术问题。实际的运算放大器在大多数应用中都具有出色的性能,正是这种高度可预测的良好性能使运算放大器成为现代模拟设计中广泛应用的组成部分。这是如何实现的?

在实际的OPA中,各组件固有的“惯性”会造成相位迟滞,在高频时,相位迟滞更加严重,从而导致出现大相位角。大部份原因应该归结于晶体管,但电阻的电容特性也会造成相位迟滞。如果增益振幅过大,闭回路响应将会不稳定。这种情况通过“HF补偿”(HF compensation)来解决,说明大多数当代运算放大器中都会考虑这一点。稳定性标准大家都很熟悉,比较可靠的教科书中都会进行全面阐述。关于这个主题,推荐大家阅读麻省理工学院(MIT)的Jim Roberge撰写的《运算放大器》(Operational Amplifiers)。到目前为止,最常用的稳定技术是“主导极点”(dominant pole),它可以保证闭回路响应无条件保持稳定(至少在单位闭回路增益和并非完全无功负载的情况下),虽然从某些方面来说效率很低,却大大简化了运算放大器的使用。但也正是这种技术导致许多实际应用中的交流(AC)增益极低。

在数据手册中,OPA的性能通过大量与直流(DC)特性有关的资料来体现。其中之一是开回路DC电压增益AO。在竞争激烈的现代社会,人们认为AO低于100dB(也就是低于x100,000)的运算放大器才刚刚勉强达到标准。所以,人们费尽心力地来提高这个参数值——100万很常见,1,000万也算平常。我不明白为什么大家需要这么高的增益。即使在应变计(strain-gauge)界面这样的应用中,数百万DC增益也是不合理的。

例如,假设我们希望实现x10,000的闭回路增益,以便将100mV的讯号提升到可用的1V。为了达到-1%的误差,有限的AO必须是100万。但是反馈网络中用来定义增益的电阻的精度绝不会高于1%;应变系数的不确定性往往会导致更大的标度误差。鉴于应变测量通道的单次校准通常都是强制性的,所以使用较低的AO就足以提供足够的性能,特别是当这个参数在温度和电源电压下是稳定的,设计良好的现代产品通常都是如此。

从前的谜题

人们偶然注意到,IC中出现的某些微妙的、一时令人费解的限制,可能会阻碍实现非常高的DC电子增益。在运算放大器发展早期,这曾经是相当大的问题,当时人们还不像现在技术娴熟的设计师一样了解硅的真实特性。事实上,这个问题首次出现时,人们觉得非常令人费解。不仅增益低于预期值(通常要低得多),它甚至可以是反相符号:也就是说,外部网络提供的负反馈在非常低的频率下变为正反馈,但闭回路响应却保持稳定!这怎么可能呢?

阅读全文,请先
您可能感兴趣
自1984年,意法半导体首次进入中国,成为首批在中国开展业务的半导体公司。意法半导体CEO Jean-Marc Chery日前表示,中国市场是不可或缺的,是电动汽车规模最大、最具创新性的市场,与中国本地的制造工厂达成合作,具有至关重要的作用。他还表示,意法半导体正在采用在中国市场学到的最佳实践和技术,并将其应用于西方市场,“传教士的故事结束了”。
本文整理分析了30家本土上市半导体公司2024三季度财报数据,结合第三季部分企业的重点新闻,让读者了解目前本土电源管理芯片市场现状及企业布局。
宽禁带半导体材料的兴起成为了电力电子领域最为显著的变化之一。作为行业领导者,PI公司不仅敏锐地捕捉到了这一趋势,而且通过自主研发和技术创新,积极地适应了市场的变化。借该公司1700V氮化镓功率器件发布之机,笔者有幸对PI营销副总裁Doug Bailey进行了专访。
氮化镓在成本上具有显著优势,但目前的氮化镓开关器件大多局限于较低的耐压水平,无法满足更高电压应用的需求。在此背景下,开发出高压氮化镓开关IC,就具有革命性意义。
今天我又把同事的七彩虹战斧GeForce RTX 4060 8GB GDDR6显卡给拆了。发现它虽然用料不怎么样,但性能却非常地好。
传统上认为只有碳化硅能够切入的高压领域,氮化镓产品也已经出来了——看PI VP在2024年CEO峰会上如何解读!
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
投资界传奇人物沃伦·巴菲特,一位94岁的亿万富翁,最近公开了他的遗嘱。其中透露了一个惊人的决定:他计划将自己99.5%的巨额财富捐赠给慈善机构,而只将0.5%留给自己的子女。这引起了大众对于巴菲特家庭
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
来源:IT之家12 月 18 日消息,LG Display 韩国当地时间今日宣布,已将自行开发的“AI 生产系统”投入到 OLED 生产线的日常运行之中,该系统可提升 LG Display 的 OLE
2024年度PlayStation游戏奖今日公布,《宇宙机器人》获得年度最佳PS5游戏,《使命召唤:黑色行动6》获得年度最佳PS4游戏。在这次评选中,《宇宙机器人》获得多个奖项,包括最佳艺术指导奖、最
 “ 担忧似乎为时过早。 ”作者 | RichardSaintvilus编译 | 华尔街大事件由于担心自动驾驶汽车可能取消中介服务,Uber ( NYSE: UBER ) 的股价在短短几周内从 202
在科技浪潮翻涌的硅谷,马克·扎克伯格不仅是“脸书”帝国的掌舵人,更是以其谦逊低调的形象,在公众心中树立了独特的领袖风范。然而,在镁光灯难以触及的私人领域,扎克伯格与39岁华裔妻子普莉希拉·陈的爱情故事
今天上午,联发科宣布新一代天玑芯片即将震撼登场,新品会在12月23日15点正式发布。据悉,这场发布会联发科将推出全新的天玑8400处理器,这颗芯片基于台积电4nm制程打造,采用Arm Cortex A
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播