越来越多的公司开始将机器学习纳入其营运业务中,但随着AI生态系统扩展,他们开始面对如何为其业务决定最适用加速器的“选择题”…

首先,确定您是否真的需要。

随着越来越多的公司开始采用机器学习作为其正常业务营运的一部份,无论一开始出于何种原因而投资于硬件的公司,如今正因为这一生态系统开始扩展而面对着如何在各种不同加速器之间作抉择的难题。

在即将上市的各种不同芯片架构之间进行选择时,性能、功耗、灵活度、连接性以及总拥有成本(TCO)当然是判断的标准。除此之外,还有其他值得考虑的因素。


Alexis Crowell (来源:Intel)

不久前,我有机会针对这个主题采访了英特尔(Intel)人工智能(AI)产品营销资深总监Alexis Crowell。英特尔提供了具有完全不同架构的各种AI加速器产品(包括Movidius、Mobileye、Nervana、Loihi等,但当然不只这些,而且更不用提还CPU产品了)。Crowell很开心地强调,还有一些较不明显的评判标准在选择AI加速器时也应该加以考虑。

你真的需要AI加速器吗?

事实上,一个最不明显但应该是最直接的问题是:您的应用真的需要最新的AI加速器ASIC吗?

Crowell说:“这是一个十分普遍的问题,特别是因为AI如此流行。许多公司真的想做AI,但大多数并不是真的了解它的意义,也不知道要从哪里开始。”

英特尔从指导客户完成整个流程的经验中发现,除了数据中心超大规模业者(hyperscaler)和大型云端服务供货商之外,大部份的客户还没有为AI加速做好准备。大多数的业者都还需要花费大量的时间才能使其数据就绪。

她说:“如果您只想试着整理资料,那就无需投资于昂贵的加速器硬件,只是为了清理数据。我们与客户的许多对话主要都在于弄清楚他们在这一过程中的位置。”

Crowell还说,有些数据中心客户可能也有大量可用的备用CPU周期——在此情况下,为什么还要另外花钱呢?

软件堆栈够成熟吗?

每一种新芯片架构都需要以某种方式进行编程。尽管目前不会有人在缺少相应工具链的情况下发布新芯片,但是这些软件堆栈的成熟度是需要考虑的因素之一。

Crowell说:“当所有的新创公司一下子涌进这一市场时,真正有趣的是:用于AI的软件堆栈十分困难。英特尔拥有25年编写和软件开发工作经验,目前还有数百人在为所有的产品组合执行软件作业。我认为,将其整合于人们已在使用中的架构、编译程序堆栈或任何看起来类似的东西中,对于在进行硬件决策时的理解非常重要。”
20191119-301.jpg
英特尔的Movidius Myriad X视觉处理单元(VPU)瞄准了无人机、机器人和智慧相机(来源:Intel)

是否考虑过安全性?

Crowell说:“当今的安全性(security)比以往任何时候都更重要。”他并强调数据的安全性和业务模式的稳定性也同样重要。

她说:“数据本身就应该加入更多的安全性,才能确保它确实是您所期待的数据池或真正的数据量。但是在进行训练之前,如何确保数据安全,从而确定您不至于取得错误的输入?[你怎么知道]会不会有人一直在编造数据的子集,导致其开始影响结果?”

模型的安全性同样重要。一旦在野外(在终端装置中)部署了模型,就需要保护其免于受到攻击者的尝试骇入、更改模型权重以操纵结果,或者即使只是窃取您的IP (也就是您的模型啊!)。

她说:“我们正为推论建构一款芯片,为其内建了RAS [可靠性、可用性和可维护性]功能,专门用于解决此问题。由于我们将安全性和AI视为重要基础,因此不可能先打造了解决方案,之后再为了增加安全性而加以改造。您必须从一开始就这样做。”

芯片是否经过基准检验?

适用于AI加速器的基准检验仍处于早期发展阶段。英特尔是向MLPerf以及百度(Baidu) DeepBench提交结果的少数几家公司之一。尽管Crowell强调,英特尔希望客户能够在不同产品之间进行公平的比较,而基准检验正是一个很好的起点,不过她对于当今基准检验经常使用的模型表感到有些失望。
20191119-302.jpg
英特尔的Nervana神经网络处理器提供了训练和推论版本(来源:Intel)

她说:“如今,ResNet和MobileNet是一种入门级的拓扑,无法反映人们在现实世界中实际上如何使用AI。但我认为这是尝试让所有人看法一致的良好基础,因为有了AI就有很多的“变量”——批次大小、延迟需求、准确性要求等等...您必须从某个地方开始。而从ResNet和MobileNet开始并不表示我们无法成长为更现代、更巨大且更贴近实际情况的模型。”

Crowell提到的最后一点是,应该将基准视为未来更广泛发展的一部份,并能将在此讨论的所有问题都纳入考虑。

她说:“我一直提醒客户不要以基准为其整体决策的判断标准。因为还必须考虑到其他的许多因素¬¬——就像生活中发生的所有大小事,这是十分微妙的。”

编译:Susan Hong   责编:Yvonne Geng

(参考原文:How to Choose Between AI Accelerators,bySally Ward-Foxton)

 

阅读全文,请先
您可能感兴趣
新款开发板售价仅为249美元,而上一代40 TOPS开发板售价为499美元,价格仅为上一代的一半。这使得Jetson Orin Nano Super成为“世界上最经济实惠的生成式AI计算机”,特别适合商业AI开发者、爱好者和学生使用。
近年来,AWS还积极投资于人工智能(AI)、机器学习(ML)、大数据分析和边缘计算等前沿技术,以保持其在这些领域的竞争优势。
通过机器学习技术,EDA工具可以获取更精确的模型来预测设计中存在的问题,如布线拥塞、信号干扰、热效应等,从而为用户提供更准确快速的指导,避免后期返工。
这一新规则可能会引起美国在世界各地的合作伙伴和盟友的重大担忧,以及一些国家的不满,担心美国会充当单方面仲裁者,决定谁可以获得对AI至关重要的先进芯片。
谷歌认为,这种独家协议可能会限制市场竞争,导致其他公司无法自由地使用OpenAI的技术,从而增加了用户面临额外成本的风险,比如数据迁移和员工培训等。
有鉴于电动汽车、自动驾驶和人工智能业务等未来增长潜力,以及在马斯克在当选总统特朗普政府中的“特殊地位”,多家分析机构认为,马斯克的财富未来还将进一步增长。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
对于华为来说,今年的重磅机型都已经发完了,而明年的机型已经在研发中,Pura 80就是期待很高的一款。有博主爆料称,华为Pura 80将会用上了豪威OV50K传感器,同时电池容量达到5600毫安时。至
LG Display  12月18日表示,为加强OLED制造竞争力,自主开发并引进了“AI(人工智能)生产体系”。“AI生产体系”是AI实时收集并分析OLED工艺制造数据的系统。LG Display表
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
今天上午,联发科宣布新一代天玑芯片即将震撼登场,新品会在12月23日15点正式发布。据悉,这场发布会联发科将推出全新的天玑8400处理器,这颗芯片基于台积电4nm制程打造,采用Arm Cortex A
 “ AWS 的收入增长应该会继续加速。 ”作者 | RichardSaintvilus编译 | 华尔街大事件亚马逊公司( NASDAQ:AMZN ) 在当前水平上还有 38% 的上涨空间。这主要得益
极越汽车闪崩,留下一地鸡毛,苦的是供应商和车主。很多人都在关心,下一个倒下的新能源汽车品牌,会是谁?我们都没有未卜先知的超能力,但可以借助数据管中窥豹。近日,有媒体统计了15家造车新势力的销量、盈亏情
上个月,亿万富翁埃隆·马斯克谈到了年轻一代的生育问题。他强调生育的紧迫性,认为无论面临何种困难,生育后代都是必要的,否则人类可能会在无声中走向消亡。他认为人们对于生育的担忧有些过头,担心经济压力等问题