一个美国工程师在学生时代碰到了几个奇怪的电路现象(通常发生在深夜)。波特图显示的输入阻抗与频率无关,难道是米勒效应不起作用了? 本应为直线的二极管电流却呈现非线性,是不是KCL定律罢工了?大家都知道,设计中要尽量避免运放差分电路,也不要在负反馈运算中使用电压比较器,但是有一个电路却使用电压比较器提供相当准确和稳定的差分,莫非“错误+错误=正确”?

我想每个电子工程师都曾遇到过令人困惑不解的电路现象,乍一看似乎是荒谬的,但确实如此。下面我跟大家分享几个奇怪的电路现象,这是我在当学生的时候遇到的,它们通常发生在深夜,诡异吧?!

不受频率影响的容性阻抗?

众所周知,反相放大器的反馈路径中的电容反馈到输入端,会由于米勒效应而放大。 因此,图1电路的反相输入节点的阻抗Zi应该是容性的,并且会随频率以-1 dec / dec的速率降低。 然而,对应的波特图却显示出一个与频率无关的16Ω输入阻抗。这是怎么回事?难道米勒效应不起作用了吗?那个16Ω是从哪里来的呢?

图1:Zi的频率图。难道是米勒效应罢工了?

一个奇怪的差分放大器

我们知道,只要图2a中运算放大器的开环增益α是无限的,该电路就可以给出V(O)= V1-V2。如果将输入端连接在一起,使V2 = V1,如图2b所示,那么我们可以得出V(O) = 0,这表示一个无限大的共模抑制比(CMMR =∞)。 如果开环增益a≠∞呢?事实证明,无论a是多大(∞ >a > 0),图2b电路给出V(O)= 0是不变的。你能用物理定律解释为什么吗?

20190918-002.jpg

图2:差分放大器能够具有无限大的CMRR,却只有有限的开环增益a?

实际上还不止如此。当a 是负值时,这个电路仍然保持V(O)= 0,这种情况下反馈就变为正的啦。图3示出了这种现象,运放的直流增益a0 = –1 V/V。 为了验证这个电路的稳定性,假设运放具有1MHz的极点频率,并使电路受到小的电流干扰,之后V(O)返回到零。你是否能解释为什么这个电路一直稳定,即使反馈是正的?

但是,如果a0负值增加,电路将变得不稳定。 图3示出了a0 = –3 V/V的情况,这时干扰会引起发散响应。 为什么会这样? 介于收敛和发散响应之间的a0边界值是多少?

20190918-003.jpg

图3:具有正反馈的稳定电路?

错误+错误=正确?

众所周知,在设计中应尽量避免运放差分电路,因为它容易产生无法容忍的振荡增益峰值。另外,我们也知道应该避免在负反馈运算中使用电压比较器,因为它们是为开环运算而设计的,缺乏用于稳定负反馈运算的频率补偿。 然而,图4中的电路却使用电压比较器来提供相当准确和稳定的差分,如相应的波形所示。怎么回事? 谁说错误+错误≠正确?稳定比较器的频率补偿网络在哪里?

20190918-004.jpg

图4:用电压比较器实现的差分器。

从曲线中获取直线?

图5的电路是非线性的,因为它包含二极管。 但是,如果我们把注意力集中在–4 V < vI < +4 V范围内运算,就可以看到所有的二极管都是导通的,在这种情况下,它们近似于短路。(我已经为SPICE二极管model D指定了一个非常大的饱和电流,所以这个电路电流的二极管正向压降不会超过几百毫伏)。鉴于–4 V < vI < +4 V范围内所有的电压都是直线(见上面的轨迹),按照欧姆定律,电阻电流也应该是直线。 因此,二极管电流(根据基尔霍夫电流定律KCL似乎是电阻电流的组合)也应该是直线的。 然而,底部迹线却显示非线性二极管电流! 这是怎么回事?难道KCL罢工了吗? 或者这是一个SPICE鬼影?亦或是一个深夜幻觉?

20190918-005.jpg

图5:二极管桥电路。

这个电路不应该振荡吗?

图6的电路仿真一个放大器,具有80 dB直流增益、两对极点-零点,以及一个额外的极点。 此外,它在±10 V时饱和。它的波特图揭示出两个频率,在这两个频率上输出相对于输入延迟了180°。 我们使用PSpice的光标工具发现这两个频率约为27 kHz和60 kHz。 而且,这些频率点的增益分别为V(O)/V(I) = –370 V/V 和V(O)/V(I) = –48.3 V/V。

20190918-006.jpg

图6:开环增益放大器具有三个极点、两个零点和±10 V饱和电压。

如果我们现在在这个放大器周围应用全反馈,如图7(上图)所示,预期在27 kHz和60 kHz频率上反馈回路内部产生的噪声会被放大,分别可达到370 V/V和48.3 V/ V,每次循环都会引起两个发散响应。 由于±10 V的饱和极限,我们预计电路会在27 kHz和60 kHz附近分别出现两种振荡模式的稳态情形。

20190918-007.jpg

图7:对图6放大器进行全增益运算配置。频率响应(上图)和单位阶跃响应(下图)。

从图7的频率和瞬态响应,我们看到一个相当稳定的电路。你能直观地证明这一点吗?设想你正在向一个热情的人文专业学生——比如你的女友——解释这个电路现象。不要谈奈奎斯特稳定标准,也没有柯西论点,更没有深奥的数学工具,如果可能的话,只用你的物理直觉。

编译:Jenny Liao   责编:Yvonne Geng

(参考原文:Circuit paradoxes – Or are they?,by Sergio Franco

  • 看到是Sergio,感觉是西班牙人!
  • 器件参数不对吧
  • 饱和了吗? 为什么深夜出现饱和现象?? 作者没有正面回答他提出的问题呀???
  • 竟然都是问句
阅读全文,请先
您可能感兴趣
晶华微发布重要公告,宣布公司拟使用自有资金2亿元收购芯邦科技持有的深圳芯邦智芯微电子有限公司100%的股权……
短期全球芯片市场数据的上调反映了 2024 年第 2 季度和第 3 季度业绩的改善,尤其是在计算领域,受AI 芯片支持的需求推动。
近期,国内射频芯片上市公司慧智微电子被曝出大规模裁员的消息,其中研发人员裁员比例高达40%,赔偿方案为N+1。此次裁员行动迅速且果断,涉及上海和广州分公司……
汇顶科技在芯片领域再下一城,计划通过发行股份及支付现金的方式收购云英谷科技股份有限公司(以下简称“云英谷”)的控制权,并拟发行股份募集配套资金。此举标志着汇顶科技在显示芯片领域的进一步布局,同时也是云英谷在资本市场的重要一步。
目前受到脑机接口技术和伦理、安全等因素的制约,无论是各国科研院所还是企业,研究重点都侧重非侵入式脑机接口。但是作为脑机行业的风向标,马斯克的Neuralink公司选择的却是植入式方案,哪种路线更具发展潜力?在具体应用上现状如何?又需要什么样的芯片来帮助脑机技术突破目前瓶颈?
传统的康复机器人,尤其是外骨骼康复机器人,虽然在某些方面表现出良好的康复效果,但也存在诸多问题。这些设备通常体积庞大、价格昂贵、操作复杂,难以在家庭和社区广泛推广。因此,迫切需要一种便捷、柔软舒适的康复机器人……
• 目前,iPhone在翻新市场中是最热门的商品,并将长期主导着翻新机的平均销售价格。 • 全球翻新机市场持续向高端化发展,其平均销售价格(ASP)现已超过新手机。 • 新兴市场是增长的最大驱动力,消费者对高端旗舰产品有着迫切需求。 • 由于市场固化和供应链的一些问题限制推高中国、东南亚和非洲等大市场的价格。 • 2024年,这些翻新机平均销售价格将首次超过新手机。
从全球厂商竞争来看,三季度凭借多个新品发布,石头科技市场份额提升至16.4%,连续两季度排名全球第一……
最新Wi-Fi HaLow片上系统(SoC)为物联网的性能、效率、安全性与多功能性设立新标准,配套USB网关,可轻松实现Wi-Fi HaLow在新建及现有Wi-Fi基础设施中的快速稳健集成
其中包含Wi-Fi 7和蓝牙5.4 模组FME170Q-865、Wi-Fi 6和蓝牙5.4 模组FCS962N-LP、Wi-Fi 6和蓝牙5.3模组FCU865R 、独立Wi-Fi和蓝牙模组FGM840R、高功率Wi-Fi HaLow模组FGH100M-H……
小米15 Ultra目前已经三证齐全,静待2月份发布了,大概率会是2025年第一款超大杯旗舰。博主定焦数码最新公布了一张该机的渲染图,后摄区域是根据内部结构绘制,展示了全新的排列方式。四摄呈L形排列,
‌‌Jan. 9, 2025 产业洞察根据TrendForce集邦咨询最新研究,随着人型机器人迈向高度系统整合,并有望从工业场景走进家庭生活,前端的AI模型训练将更为关键,以满足更多后端理解与互动需求
CES 2025,黑芝麻智能携旗下华山系列、武当系列芯片参展,并带来与产业链伙伴的合作新进展。1月8日,黑芝麻智能与汽车嵌入式互联软件产品和解决方案供应商Elektrobit联合发布了基于武当系列C1
点击蓝字 关注我们SUBSCRIBE to USImage: The Verge据悉,OpenAI已经制定了成为一家营利性公司的计划。在近日发布的一篇博客文章中,OpenAI的董事会表示,将把公司现有
随着Mini/Micro LED技术发展和小间距产品成熟,LED显示行业在更多细分场景下的高增长潜力正在加速释放。Mini LED背光市场自2021年进入起量元年后,年复合增长率达50%;Micro
近日,闻泰科技在一场电话会议中阐述了其出售ODM(原始设计制造)业务的战略考量。           闻泰科技表示,基于地缘政治环境变化,考虑到 ODM 业务稳健发展和员工未来发展利益最大化,公司对战
  在千级电子净化车间中设置通风系统时,需要综合考虑多个因素,包括洁净度要求、换气次数、气流组织、空气处理、温湿度控制以及节能与环保等。以下是合洁科技电子洁净工程公司的一些具体的设
点击蓝字 关注我们SUBSCRIBE to US如果你听说过深度伪造(deepfakes),即人们做着从未做过的事或者说着从未说过的话的高度逼真视频,你可能会认为这是一种可疑的技术发展成果。例如,它们
据彭博社报道,软银集团及其控股子公司 Arm 正在探讨收购 Ampere Computing 的可能。 Ampere Computing 是甲骨文支持的半导体设计公司,致力于塑造云计算的未来,并推出了
1月8日消息,据外媒报道,由于半导体行业需求衰退,日本瑞萨电子将在日本及海外裁员数百人,并且定期加薪也将被推迟!据报道,瑞萨电子在日本和海外有约21,000名员工,本次裁员比例近5%。这一裁员计划已于