要说今年最火的电源议题,氮化镓(GaN)当之无愧,在输入电压为100 V或更低的应用中,已经没什么理由能让你拒绝GaN晶体管。相比传统硅晶体管,GaN可以使电源效率更高、温度更低、尺寸更小,实现大功率电源无散热片设计。在近日ASPENCORE举办的第20届电源论坛上,有三位演讲嘉宾都分享了GaN相关话题……

再有几天,苹果就要发布最新一代的iPhone了,网上被爆料最多就是无线充电、快速充电功能和配件。作为永远慢一步的手机厂商代表,苹果曾被寄予厚望优先采用无线充电和快充,但直到2017年他们才发布支持Qi标准的iPhone。虽然同期他们还宣布将发布一款神奇的无线充电枕AirPower,号称能同时为三款苹果设备无线充电,但直到2019年产品都没有面世。最终在2019年3月,苹果不得不宣布取消AirPower项目。

虽然已经有第三方厂商,按照AirPower的概念做出了多线圈一对多充的,但能否获得苹果授权和支持还不得而知,毕竟三台设备一起充电的发热量,要达到苹果的要求很难。现在苹果官网上卖的仍旧是“天价”的第三方5W、7.5W无线充电板。

无线充电比插线充电方便那么一点点,但论速度是远远比不上有线快充。有评测机构做过实验,同样是5W的输出功率,无线充电的效率远不如有线充电。这也是为什么无线充电10W、15W就可以称为快充,而有线充电现在都卯足了劲往100W跑,就连苹果据传都会在今年放弃祖传的“五福一安”充电器,改用18W USB-C PD充电器。

如果消息属实,那将是苹果的一大步,因为iPhone 8之后的机型其实都支持18W快充,但苹果却继续标配“五福一安”,然后在官网卖“天价”第三方快充头。为什么第三方厂商就能在“五福一安”同等体积下,做出18w USB PD充电器,苹果却不行?无线充电在设计和测试上要注意什么?最近又有哪些功率器件和解决方案可以提高电源效率?

9月5日,ASPENCORE在深圳南山科兴科学园举办了第20届电源管理论坛,主题为“快充、无线充以及电池电量监控”,你或许能从这里找到答案。

今年最火电源议题——GaN

要说今年最火的电源议题,氮化镓(GaN)当之无愧,在输入电压为100 V或更低的应用中,已经没什么理由能让你拒绝GaN晶体管。相比传统硅晶体管,GaN可以使电源效率更高、温度更低、尺寸更小,实现大功率电源无散热片设计。在这次电源论坛上,有三位演讲嘉宾都分享了GaN相关话题。

Power Integrations(PI)资深技术经理Jason Yan介绍了该公司的GaN开关技术InnoSwitch-3系列新品。普通MOSFET的输出电容在其开通时,通过其本身进行放电。但是寄生电容的大小与MOSFET的大小成比例,更大MOSFET等于更多的开关损耗,而PI的PowiGaN开关单位面积的RDS(ON) (导通电阻)更小,意味着更低的导通损耗。
20190902-PI-11.JPG

(图自:Power Integrations )

“一般来说,开关损耗会随着管子大小的增大而增加,导通损耗会随着管子大小(体积V)的增大而减小,两者曲线的交叉点就是传统MOSFET的功率损耗。但GaN的开关损耗既不取决于电容(C)大小,也不取决于体积,所以其功率损耗的交叉点要比传统MOSFET低很多。” Jason介绍到。
20190902-PI-3.JPG
与硅器件相比(蓝色),GaN产品(红色)将输出功率在PFC-400VDC下做到了近120W最高值(图自:Power Integrations)

用GaN开关替换IC初级的常规高压硅晶体管,可以降低电流流动期间的传导损耗,并极大降低工作时的开关损耗,最终有助于大幅降低电源的能耗,从而提高效率。
20190902-PI-15.jpg
PowiGaN方案做出的业界首款90W USB-C双头充电器,可以同时给两台MacBook充电(图自:Luffy Liu摄 电子工程专辑

世强先进的现场应用工程师苏阳东也分享了“采用GaN技术实现高密高效的快充应用”的主题演讲。为什么我们需要快充?他首先介绍了智能手机充电的发展史:从2009年到2019年,手机电池容量越来越大,充电时间却越来越短,由原来的7、8小时到现在半个小时,充电器的功率也越做越大,从2.5W到现在的55W、65W甚至100W,但是充电器的体积却一直保持着小型化。

由此可见,后续的充电器的主要还是往功率密度越来越高的方向发展。而硅器件被开发到极致时,更高频率的GaN器件更加适合应用于高效、高功率密度、小体积的快充产品设计。
20190905-power-9.JPG
(图自:世强先进)

“目前我们所讲的氮化镓基本都是硅基氮化镓,结构上采用的是硅衬底,之后是缓冲成,然后是二维横向的电子通道,在往上就是氮化镓铝(AlGaN)GS三极(漏极、栅极和源极)。” 苏阳东介绍到,“GaN主要是通过二维电子通道和外延结构,提供极高的电荷密度和迁移率来形成导通通道。”

世强目前代理英诺赛科(innoscience)的GaN器件,并推出了很多快充参考设计,与硅MOSFET的方案相比,GaN方案具有高效、高密、小体积化的特性。

今天第三位分享GaN话题的是亿思腾达芯片集成方案主管周鹏,他们的超薄电源方案采用纳微电子(Navitas)的GaN功率芯片。据周鹏介绍,纳微拥有全世界第一款AllGaN功率IC,也是首个、最快速集成的GaN门极驱动器,速度高于所有门极驱动器3倍以上,支持40MHz开关频率。
20190905-power-10.JPG
硅、分立GaN和集成GaN功率IC的电源设计复杂程度和能效对比(图自:亿斯腾达)

20190905-power-11.JPG
纳微的65W USB A+C快充方案与苹果iPhone的12W充电器对比,体积相差不多,但是输出功率、各种条件下的效率都秒杀之。(图自:亿斯腾达)

隔离解决方案

做电源设计一定离不开隔离,芯科科技(Silicon Labs) 华南区销售经理林秋华,介绍了自家阵容齐全的电容隔离产品,并且与竞争对手的电感型、磁耦型产品做了对比。

首先是一个灵魂拷问:为什么要做隔离?林秋华表示,在电源产品中,往往输入端有高电压,控制端则是低电压,400V高压输入和3.3V 的MCU在一起能好么?所以需要隔离来减少干扰,也是为了保障安全。我们电源适配器中的变压器,其实就是最传统的隔离方式。

20190905-siliconlabs-1.jpg
(图自:Silicon Labs)

而隔离技术又分为:

1、 以Silicon Labs和TI为代表的电容型;
2、 以ADI为代表的电感型;
3、以博通、东芝和Vishay为代表的光耦型。

20190905-siliconlabs-2.jpg
Silicon Labs对三种隔离技术的特点总结(图自:silicon Labs)

林秋华认为,基于CMOS工艺的电容耦合是目前最先进、性价比最高的隔离技术,在同样的性能下,磁耦比容耦贵20-30%。而光耦之所以价格低,是因为产量大,但是容耦正在逐步取代光耦,比如在电动汽车BMS中,用半导体隔离方式取代光隔离是一个趋势。
20190905-siliconlabs-3.jpg
(图自:silicon Labs)

ST开关数字电源及USB-PD产品

意法半导体(ST)技术市场经理谭有志介绍了一款开关数字电源产品。STNRG011在一个封装内整合双端LLC谐振半桥控制器、多模式功率因数校正(PFC)控制器和数字内核。片上集成的数字外设利用ST的SMED(状态机事件驱动)技术和专有模拟硬件,提升控制回路的处理性能,实现动态响应。芯片上还配备非易失性存储器,用于存储专用参数。

20190905-power-1.JPG
(图自:意法半导体)

STNRG011的数字控制和用户编程功能帮助工程师在整个负载范围内优化能效和性能,并利用轻载时的突发模式来最大限度地提高能效。2针UART / I2C端口连接主机系统,能够监测并管理电源。

片上还集成诸多其它功能,包括LLC和PFC栅极驱动器、高压(800V)启动电路和线路感应功能,以进一步简化应用设计,提高可靠性和耐用性,降低解决方案的尺寸和物料清单BOM成本。鉴于新的视听和ICT设备安全标准IEC 62368-1正在取代美国和欧盟的60950和60065标准,STNRG011会集成一个X电容放电电路,以降低终端设备的合规难度。

20190905-power-2.JPG
(图自:意法半导体)

STNRG011还为LLC和PFC电路提供全面的安全保护功能,包括过压、过流、欠压、浪涌、反馈断开、抗电容保护、欠压保护和软启动。

谭有志表示,其实STNRG011已经是一款量产近两年的产品,虽然是数字电源,但模拟工程师可以轻松实现调试优化,可以说是以普通芯片的价格,买到ASIC芯片的能力。

意法半导体功率器件市场部经理唐建军则介绍了一些ST MOSFET在USB-PD电源应用中的成功案例。首先在高电压功率MOSFET技术中,主要分为Planar和Super Junction(SJ)两块,下面是ST目前SJ技术分类以及对应的应用领域。
20190905-power-3.JPG
(图自:意法半导体)

成功案例介绍中,我们看到有谷歌、HP、华为等大厂的USB PD电源,功率从27W到65W不等,涉及到的产品有QR Flyback MOSFET、SR MOSFET、Active clamping MOSFET等等。

无线充电的测试

是德科技(Keysights)渠道经理廖征宇在介绍无线充电线圈测试之前,先为大家科普了一下元器件的阻抗测试。所谓阻抗(Z),就是元器件或电路对交流电总的反作用。
20190905-power-15.JPG
(图自:是德科技)

与阻抗值相关参数主要是质量因子(Quality Factor,Q因子)和损耗因子(Dissipation Factor,D因子)。
20190905-power-14.JPG
(图自:是德科技)

但没有任何一种元器件,是单纯的电阻或电抗属性,他们都是由R、C、L(电阻、电容、电感)三种属性合并而来,而其中那种“最不想要的属性”,被称为“寄生效应”(parasitics)。学会了阻抗测量,才能更好地对无线充电的线圈进行测试。
20190905-power-5.JPG
(图自:是德科技)

当前无线充电技术主要有以上几种,其中蓝色的是已经商用的,几乎所有目前我们在用的无线充电都是基于磁感应或磁共振技术。磁共振虽然传输效率低,但作用距离相对较长,用户体验更好。但不管磁共振还是磁感应,功率传输效率都是一个关键指标。
20190905-power-6.JPG
(图自:是德科技)

目前世界两大无线充电联盟所对应的技术,对比如下。
20190905-power-7.JPG
(图自:是德科技)

在无线充电测量中,包括很多项目,其中发射机主要测试输出阻抗,接收机主要测试输入阻抗。而在研发阶段,发射机的耦合效率、接收机的电感和线圈/谐振器Q值也是重要测试项目之一。
20190905-power-8.JPG
(图自:是德科技)

线圈中的LC谐振电路会直接影响功率传输效率,因此需要用阻抗、电感、电容和Q因子仔细地进行表征。对于高效率的无线充电设计来说,更低的损耗(低DCR)和寄生(高Q)是必不可少的。

发射机和接收机线圈俺的电感通常在微亨(μH)范围,测试在几十到数百kHz的频率范围内进行。因此,阻抗范围从几毫欧到几欧,需要测试设备有优异的宽阻抗范围特性,将精度保持在10%以内。

万物皆可USB-C充电

赛普拉斯(Cypress)区域市场经理Gary Yuan在介绍方案之前,首先晒了一下Cypress在USB方面的硬实力。截至2018年,他们的USB总出货量达22亿颗,其中2015年到2018年出货超过5亿USB-PD控制器,提供了从端到端几乎所有USB-C解决方案,用量最大的客户类型包括笔记本电脑、Docking、线缆(带芯片)、显卡、游戏PC、适配器、充电头以及充电宝等。

而这次Gary主要介绍的是一款USB-PD电源完整解决方案——EZ-PD PAG1,这是一个完整的AC/DC供电解决方案,目的是打破传统PD充电器设计思路,从而实现“USB-C驱动一切”。

20190905-power-13.JPG

EZ-PD PAG1为双芯片USB-C供电解决方案,将主要的一级、二级及USB PD控制器元件集成在一起。所有控制,包括初级控制器(PAG1P)都由次级控制器(PAG1S)控制,可以有效提升设计效率,并且次级控制回路使负载动态响应更快(3ms以内),系统稳定性好。

20190905-power-17.JPG

同时,单芯片次级芯片 PAG1S集成了同步整流控制器(SR),支持动态开关模式,内置MCU可灵活控制初次级两端MOSFET。初级芯片PAG1P可以可通过一个小变压器接收次级IC发出的PWM控制信号,并在次级IC PAG1S的控制下实现初次级两端MOS同步。

20190905-power-16.JPG

PAG1具备可编程性,支持多种充电标准,包括:PD3.0 (PPS)、QC4/4+、Apple Charging、QC 3.0/2.0、三星AFC和BC 1.2。

USB-C是一种新的连接标准,可在为不同设备同步供电的同时,通过同一根电缆和标准的正反通用连接器来传输数据。据IHS Technology的报告预测,现在所有使用USB的设备都可能统一为Type-C。

Gary表示, USB-C可以提供高达100W的功率输出,并可通过同一端口支持不同的接口标准。随着越来越多的设备趋向于采用同一个充电器或电源适配器来充电,笨重的各类专用电源适配器也将不再是必需品,以后出门随身只用带一个USB-C电源就可以了。

相关阅读:阳光电源的125kW 1500VDC串联逆变器SG125HV 

 

 

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣
太倒霉了,把儿童手表的充电线,接到了骨传导耳机上,当下耳机就被烧了!是手表充电线电流过大导致的损坏?还是正负极反接造成的?
碳化硅技术正在彻底改变电力电子行业,使各种应用实现更高的效率、更紧凑的设计和更好的热性能。ST、安森美、Wolfspeed、罗姆和英飞凌等领先制造商均提供SiC解决方案,可根据特定用例提供分立器件、功率模块或裸片形式的产品。
从运算放大器、逻辑功能芯片到高端处理器等基本抗辐射器件已经存在多年,并提供多种辐射耐受等级。尽管抗辐射是必要条件之一,仅靠器件本身并不足以保证整个电路的抗辐射性能。
过去几十年来,全球能源消耗稳步增长,预计还会进一步增长。
物理世界对智能的需求正在推动边缘设备支持复杂计算,如人工智能、机器学习、数字信号处理和数据分析等。这增加了能源需求,而这些设备通常处于能源匮乏状态。因此,迫切需要从根本上重新考虑制造这些设备的计算硬件以提高能源效率。
英诺赛科此次上市标志着作为氮化镓功率半导体领域的龙头企业正式进入资本市场,并成为港股“第三代半导体”第一股。英诺赛科的开盘价为31港元,较发行价上涨了0.5%,但随后股价跌破了发行价,市值约为270亿港元......
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
本文来源:智能通信定位圈最新消息显示,全球领先的厘米级定位导航企业苏州天硕导航科技有限公司(简称“天硕导航”)近期宣布获得数千万元级的A轮融资。本轮融资目的是扩展业务、产品开发和团队建设,深创投作为本
引言 嘿,各位电动汽车的爱好者们!咱们今儿个就来聊聊电动汽车里那些“看不见,摸不着”,但又至关重要的零部件。要说电动汽车这玩意儿,那可真是科技含量满满,各种高精尖的技术都往里堆。但要让这些
差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。差分电路的电路构型    上图是差分电路。    目标处理电压:是采集处理电压,比如在系统中像母线电压的采集处理,
从上表可知,2024年前三季度全球40强PCB企业总营收约416.7亿美元,同比增长7.6%。其中,营收排名第一位的是臻鼎科技(36.05亿美元),排名第2~5位的分别是欣兴电子(26.85亿美元)、
在储能行业蓬勃发展的浪潮中,安富利凭借卓越的技术实力与广泛的市场影响力,荣获2025“北极星杯”储能影响力BMS/EMS供应商奖。这一荣誉不仅是对安富利过往成就的高度认可,更是对其在储能领域持续创新与
点击蓝字 关注我们SUBSCRIBE to USImage: SwitchBotSwitchBot价格实惠、可调节的智能窗帘终于问世了。SwitchBot窗帘(SwitchBot Roller Sha
新品EVAL-2ED3146MC12L–带辅助电源的6.5A双通道隔离栅极驱动器评估板EVAL-2ED3146MC12L评估板用于评估功率半桥电路中的2ED3146MC12L 6.5A隔离栅极驱动器I
  合景智慧建设 (广东)有限公司子品牌合洁科技电子净化工程公司(以下简称“合洁科技”)作为洁净工程领域的领军企业,凭借其卓越的技术实力、创新的设计理念和高效的施工能力,在多个行业
                                                                                                
为进一步推进商业信用体系建设,促进企业诚实守信经营,面向企业普及诚信与品牌建设的意义,指导企业加强诚信品牌建设,提升其整体竞争力,“崛起的民族品牌”专题系列节目以诚信为内涵,在全国范围内遴选出有行业代