达成6G需要什么?大量的研究,包括电气与生物领域的研究。

在今年的美国纽约布鲁克林5G高峰会(Brooklyn 5G Summit)上,纽约大学(NYU)教授Ted Rappaport的简报介绍了在大概2030年到2035年之间会变成6G技术的初步研究;相关内容细节已经由IEEE发表,论文题目为《100GHz以上的无线通信与应用:6G及以上的机会与挑战》(Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond,按此下载)。

Rappaport在他的简报中指出,5G花了十五年时间达成初次布署,他认为6G会花相同的时间──为何能超越5G?在上述论文中解释,需要更快的无线通信速度来跟上不断提升的运算力,这也创造新的商机。到2036年,我们可能花1,000美元就买得到拥有等同人脑运算力的计算机,虽然以THz信号为基础的无线网络速度还不够快、跟不上那样的运算力,但已经让我们越来越接近了,也许7G通讯就能达到。

由Rappaport发起的纽约大学无线中心(NYU Wireless)研究项目,正着眼于100GHz以上频率、信道数据传输速率100Gbps的技术;考虑到美国联邦通讯委员会(FCC)已经释出21.2GHz的95GHz以上频谱,此技术可能在美国进行测试。

达成6G需要什么?大量的研究,包括电气与生物领域的研究。在电气领域,THz信号会带来新的问题,但也会有实现新应用的潜力,例如5G信号无法支持的感测(sensing);举例来说,能够“看”到拐角处,以及可能感测到人们在房间中的位置。

尽管如此,仍需要特征化THz频道,因为如此短的波长会让例如建筑物材料的粗糙度等因素,影响到信号的吸收或反射。试想某些建筑材料就像无响室(anechoic chambers)的墙壁那样;图1所示为Rappaport在简报中描述在一般建筑材料中的信号损失。

004ednc20190821

图1:普通建筑材料造成的信号损失,可能会催生能最小化THz信号损失的未来建筑材料。(来源:NYU Wireless)

而我们通常会认为当频率提升,一定会让信号衰减越来越大,但6G就不一定了;考虑在雨中的信号衰减,如Rappaport在布鲁克林5G高峰会的简报数据指出,研究显示,在大约100GHz的频率时,信号衰减会呈现平稳(参考图2)。

005ednc20190821

图2:研究显示,雨水导致的信号衰减会在100GHz时呈现平稳;频率升高,雨致衰减并没有随之升高。(来源:NYU Wireless)

THz频率的另一个电气问题也与波长有关,是在天线和电子组件方面。也就是说,当天线变得如此之小,其电子组件成为尺寸上的限制因素;因此电子组件可能无法整合到天线中,像是今日的28GHz与39GHz 5G频率那样。而事实上,当工程师尝试缩小放大器与其他零组件的同时,发热会是更大的问题。

此外THz信号的功率放大器会比运作于100GHz以下频率的放大器有更严重的噪声问题,这或许可以透过一种“空间过采样天线”(spatially oversampled antennas)概念来补救。空间过采样天线会产生“锥形静音区”(cones of silence),也就是一个天线数组的锥形支撑区(region of support,ROS)。其设计目标是将噪声以及其他不良因素移出到可用现场以外的区域,这种电路可能是以积分-微分调变(Σ-Δ) ADC与DAC为基础,其中回馈回路用以改善分辨率。

而如果不提及对于人体健康的影响以及进一步研究的需要,有关毫米波(mmWave)与THz信号的讨论就不完整了。在生物学方面,上述论文的作者们表示:“发热被认为是主要的致癌风险,”但是还需要更多的努力去“了解THz辐射对人体健康的生物性与分子性影响,”尽管THz频率比X光的游离辐射(ionizing radiation)频率低了三级。

编译:Judith Cheng

(參考原文: Initial 6G work is underway,by Martin Rowe)

  • 只有技术意义。没有太多的商业和大众用途意义。5G已经开始突显这种尴尬了。
  • 处理器要倒霉了,硬盘要倒霉了,宽带要倒霉了,总之6G一处,其他配套都要重新折腾一遍
您可能感兴趣
目前,CPO技术在多个领域展现出广泛的应用前景,比如数据中心、高性能计算(HPC)、人工智能、通信系统、传感器网络和生物医学等。
随着全球数字化转型市场蓬勃发展,云计算、人工智能、大数据、5G等技术的应用范围不断扩大,全球企业的数字化转型已经来到了持续发展阶段,这也促使了企业不断加大其在数字化转型的投入。其中 AI、机器视觉和 RFID 等先进技术在实现高效生产物流方面发挥着关键作用。
在外观和部分组件方面,iPhone 16e 延续了 iPhone 14 的设计。它的外壳与 iPhone 14 相似,就连 Face ID 模组也完全一样……
西安光机所在光子集成芯片领域取得了系列重要进展,相关成果发表在《科学进展》(Science Advances)、《物理评论通讯》(Physical Review Letters)、《自然通讯》(Nature Communications)以及全球光通信大会 OFC 等国际知名学术期刊上。
ADI 首席执行官兼总裁 Vincent Roche 在财报电话会议上表示,根据过去 18 个月渠道库存水位下降、预订量逐步回升等信号,公司已度过半导体行业周期的最低谷,市场形势正转向对其有利,ADI 正处于持续复苏的有利位置。
Khaveen投资指出,这一预测数据还不包括专利许可费在内,即高通可能因苹果产品转换每年再损失近20亿美元,共计损失近100亿美元。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
千万级中标项目5个,百万级中标项目12个。文|新战略根据公开信息,新战略移动机器人产业研究所不完全统计,2025年2月,国内发布35项中标公告,披露总金额超15527.01万元。(由新战略移动机器人全
Mar. 5, 2025 产业洞察根据TrendForce集邦咨询最新研究,TSMC(台积电)近日宣布提高在美国的先进半导体制造投资,总金额达1650亿美元,若新增的三座厂区扩产进度顺利,预计最快20
引言 嘿,各位电动汽车的爱好者们!咱们今儿个就来聊聊电动汽车里那些“看不见,摸不着”,但又至关重要的零部件。要说电动汽车这玩意儿,那可真是科技含量满满,各种高精尖的技术都往里堆。但要让这些
差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。差分电路的电路构型    上图是差分电路。    目标处理电压:是采集处理电压,比如在系统中像母线电压的采集处理,
国际电子商情讯,昨日(3月3日)晚间,TCL科技发布公告称,拟以115.62亿元收购深圳市华星光电半导体显示技术有限公司(以下简称深圳华星半导体)21.5311%股权。A股市场又一起百亿并购2025年
在储能行业蓬勃发展的浪潮中,安富利凭借卓越的技术实力与广泛的市场影响力,荣获2025“北极星杯”储能影响力BMS/EMS供应商奖。这一荣誉不仅是对安富利过往成就的高度认可,更是对其在储能领域持续创新与
新思科技与国际半导体产业协会基金会(SEMI 基金会)近日在新思科技总部宣布签署一份谅解备忘录(MoU),携手推动半导体芯片设计领域的人才发展。据预测,到 2030 年,全球半导体行业将需要新增 10
面板价格预测(3月)根据TrendForce集邦咨询旗下面板研究中心《TrendForce 2025面板价格预测月度报告》最新调研数据:2025年3月,电视面板与显示器面板价格预期上涨,笔记本面板价格
                                                                                                
    内容概要:目前,全球半导体、光电等电子信息产业在世界范围内转移,东亚、东南亚等地区已成为世界电子信息行业的主要市场和发展重心;同时由于我国医药卫生、半导