近日,国内数家单位组成的团队通力合作,开发出具有20个超导量子比特的量子芯片,并成功操控其实现全局纠缠。与世界上其他的超导量子芯片相比,该团队研发的芯片拥有一个显著特点,那就时所有比特之间都能够进行相互连接,这能够提升量子芯片的运行效率,也是能够率先实现20比特纠缠的重要原因之一。 这一进展8月9日发表于全球顶级学术期刊《Science》(科学)……

近日,浙江大学、中科院物理所、中科院自动化所、北京计算科学研究中心等国内单位组成的团队通力合作,开发出具有20个超导量子比特的量子芯片,并成功操控其实现全局纠缠,刷新了固态量子器件中生成纠缠态的量子比特数目的世界记录。这一进展8月9日发表于全球顶级学术期刊《Science》(科学),题为《Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits》。

20190812-quantum-1.png

在浙大超导量子计算和量子模拟实验室奋斗的青年们,包括即将入学和刚毕业不久的博士生(从左到右依次是张叙,刘武新,郭秋江,任文慧,宋超,许凯,董航,王震)。他们的辛勤工作是团队科研能够不断前进的源动力。

多比特量子纠缠态的实验制备是衡量量子计算平台控制能力的关键标志,国际竞争尤为激烈。经过近两年时间的器件设计与制备、实验测控及数据处理,由中国学者组成的联合团队成功将纠缠的比特数目推进到20。

20190812-quantum-2.png
20比特量子芯片示意图。

浙大物理系博士生宋超、中科院物理所许凯副研究员和博士生李贺康为论文共同第一作者。中科院物理所范桁研究员、郑东宁研究员和浙大王浩华教授为共同通讯。其他作者包括浙大王大伟教授、朱诗尧院士,中科院自动化所蒿杰研究员、冯卉助理研究员,北京计算科学研究中心张煜然博士,以及浙大物理系承担超导量子计算和量子模拟实验的青年团队(全部作者及单位信息参见论文)。


“摇篮”中的量子计算机

关于量子计算机的梦想始于上世纪80年代。1982年,著名物理学家费曼提出设想:既然自然的本质是量子态的,我们能否造出一台遵循量子规律的计算机,去更好的认识量子世界?人们意识到,量子计算机的技术一旦成熟,它的运算能力将远远超越经典计算机。

计算机使用“0”和“1”进行信息存储与处理。在经典计算机里,一个比特就如一个普通开关,或0或1。量子计算机则完全不同,由于量子纠缠与叠加,一个“量子开关”可以同时代表0和1,我们称之为量子比特。想象一下,一枚摆在桌上静止的硬币,你只能看到它的正面或背面;当你把它快速旋转起来,你看到的既是正面,又是背面。于是,一台量子计算机就像许多硬币同时翩翩起舞。

量子比特数,是衡量量子计算机性能的重要指标之一。通过量子纠缠与叠加,n个量子比特相互关联,可以生成2n种状态。也就是说,一个含有n个比特的经典存储器可以存储2n个可能数据当中的任意一个,如果它是量子存储器,则可以同时存储2n个数。相当于2n个经典计算机的CPU同时工作。每增加一个量子比特,量子计算机的运算能力将以指数倍增加。有报道指出,一台30个量子比特的量子计算机的计算能力和一台每秒万亿次浮点运算的经典计算机水平相当,是今天经典台式机速度的一万倍。人们相信,一旦量子比特数达到50以上,它就能在处理某些特定问题时展现超越超级计算机的运算能力。

人类差不多用了70年的时间,见证了经典计算机从笨重又不稳定、动辄占据整个实验室、浑身布满机械阀门的机器发展到便携的个人电脑、智能手机的进步;但还有许多经典计算机很难甚至无法完成的运算,量子计算机则可以胜任。我们完全有理由期待,在未来几十年内,量子计算机能从理论走向应用,完成经典计算机无法解决的大规模计算难题,在密码破解、药物设计、人工智能等领域大显身手。

然而,在澎湃的想象面前,实验室中的原型机仍像摇篮中的婴儿,到其长大成人发挥作用还需有漫长不懈怠的培养过程。近年来,不论是单个量子比特的相干性、量子门的保真度,还是量子芯片的集成度、全局纠缠态的制备规模,都在稳步提升。此前,中国科技大学的研究团队创造了操纵12个量子比特实现纠缠态的记录。如今,这个数字被刷新,人类能够同时精确操控20个量子比特进行工作。


20个人造原子的“薛定谔猫”

浙江大学西溪校区西面的一幢教学楼,狭长的过道深处就是浙江大学超导量子计算和量子模拟团队的实验室,超导量子比特芯片设计、平台搭建、测控工作都在这里完成。拔地而起的钢架,错综复杂的管线、密集叠放的电路板、嗡嗡作响的制冷机……博士生宋超介绍道,这整个房间就是一台量子计算机,它的“大脑”就在一个直径80公分的圆柱形大“冰箱”的底部。

这1平方厘米的“大脑”,需要借助于显微镜才能看到。20个量子比特,均匀分布于中心谐振腔的周边,犹如由中心枢纽贯通的各个支路。“这是我们实验室迭代的第四代电路设计方案,目标是让任意两个量子比特之间都能进行直接‘沟通’,实现全局纠缠。”芯片的设计者之一,本科生张叙说。这样的芯片则是由中科院物理所李贺康博士制备的,他在近期作为博士后加盟浙大,有望在浙大微纳加工中心做出更复杂的芯片。

全局纠缠,通俗的理解就是让所有量子比特协同起来参与工作。量子操纵是量子计算的技术制高点,而实现全局纠缠是检验操纵是否成功的标志。“能够非常高精度地操控他们,然后同时还能保持质量稳定,这是一项难度极大的挑战。”许凯介绍说。许凯6年前到浙大读研开始涉足超导量子计算领域,去年获得博士学位并加盟中科院物理所开始组建自己的实验室。

20190812-quantum-3.png
论文的两位共同一作宋超和许凯在量子计算实验平台边讨论。

实验团队利用这一芯片生成并标定了18比特的全局纠缠的GHZ(Greenberger-Horne-Zeilinger)态,以及20比特的薛定谔猫态。“我们确实看到了在经验世界中看不到的现象,用更形象就是——一只由20个人造原子构成的‘猫’,薛定谔猫态。”宋超说。

20190812-quantum-4.png
实验中先将每个量子比特都精确制备于相同量子态,然后操控所有量子比特根据系统参数进行演化。随着时间的推移,实验人员观察到量子态在最开始会被压缩,之后在不同时间点分别出现5,4,3,2个组分叠加的薛定谔猫态——在这些时刻,整个系统同时处于不同状态的叠加。上下两图分别为理论预测和实验观察结果。最右图为实验人员根据某英国教授的建议,从新的视角对5组分薛定谔猫态重新观测的结果,更有力地证明了5个状态组分之间量子纠缠的存在。

在短短187纳秒之内(仅为人眨一下眼所需时间的百万分之一),20个人造原子从“起跑”时的相干态,最终形成同时存在两种相反状态的纠缠态。论文标题中,团队用了“薛定谔猫态”来描述捕捉到的现象。操控这些量子比特生成全局纠缠态,标志着团队能够真正调动起这些量子比特。

正是这“璀璨”的187纳秒,见证了人类在量子计算的研究道路上又迈进了一步。


第一梯队

量子计算机的研发是国际科技竞争的热点领域,而多比特量子纠缠态的实验制备是衡量量子计算平台控制能力的关键标志,全球范围内竞争尤为激烈。谷歌、IBM、微软、英特尔、华为、阿里等高科技公司都为此投入大量研究力量。今年1月,IBM发布全球首个独立商用量子计算机IBM Q。

当前,实现量子计算的物理体系主要有光学系统、离子阱和量子点等微观体系,基于宏观约瑟夫森效应的超导电路由于其在可操控性和可扩展性等方面的优势,是目前国际上公认的有希望实现量子计算的几个物理载体之一。

近年来,浙江大学物理系的超导量子计算和量子模拟团队一直致力于超导量子计算和量子模拟的实验研究。2017年,团队与中科大潘建伟和朱晓波团队、中科院物理所郑东宁团队、福州大学郑仕标教授等合作10比特超导量子芯片,实现了当时世界上最大数目的10个超导量子比特的纠缠,打破了之前由谷歌和加州大学圣塔芭芭拉分校保持的记录,使得我国在量子计算机研究领域进入国际第一梯队。

“与世界上其他的超导量子芯片相比,我们研发的芯片拥有一个显著特点,那就时所有比特之间都能够进行相互连接,这能够提升量子芯片的运行效率,也是我们能够率先实现20比特纠缠的重要原因之一。”许凯总结道。

据介绍,该工作最早于5月1日公布。第二天,团队就收到了一封来自英国教授的邮件,对实验结果表示了赞赏。“他在信中提供了很好的研究建议,我们用他的方法补充了实验,更加充分地验证了我们的研究成果。”宋超说,在《科学》杂志的论文中,研究团队特意致谢了这位素未谋面的英国教授。

5月14日,美国IBM超导量子计算团队和哈佛大学里德堡原子团队也公布了类似的实验结果。三个工作报道的纠缠比特数目基本持平,反映了以纠缠态制备为代表的多量子比特相干操控是目前努力的主要方向。今天,《科学》同期还刊发了美国哈佛大学Lukin教授团队20个里德堡原子的纠缠实验。

这一研究得到了浙大“双一流”建设专项经费、国家重点研发计划、国家自然科学基金和中科院重点研究计划的支持。

本文综合自Science、环球科学、人民日报海外版、雷锋网、快科技报道

  • 不久的将来中国将制造出望万光年远镜,也就是几万光年以外的星球就在你眼前。
  • 没有美国提供的尖端科研设备,一切都是浮云
阅读全文,请先
您可能感兴趣
今天凌晨,谷歌在官方博客上公布了其在量子计算领域的重大突破——最新的量子芯片Willow不到5分钟就完成了一项“标准基准计算”。而如今最快的超级计算机完成同样的任务,足足要花费超过“10的25次方”年的时间。如果要写出来,则是 10,000,000,000,000,000,000,000,000年,这一时间跨度远超宇宙的年龄。
使用旗下CUDA-Q平台,谷歌可以在英伟达Eos超算上动用1024块H100 Tensor核心GPU,以极低的成本执行全球最大、最快的量子设备动力学模拟,可以对容纳40个量子比特的设备进行全面、逼真的模拟。
尽管量子计算机在特定情况下可能比传统超级计算机具有更高的能效,但其实际应用仍面临许多挑战。Advantrade也认为,由于量子计算在实现商业化之前还有很长的路要走,因此,采取广泛的方法来提高清洁能源和能源效率是当务之急。
复旦大学物理学系赵俊教授团队则利用高压光学浮区技术,成功生长了三层镍氧化物La4Ni3O10高质量单晶样品,并证实了这种材料在压力诱导下具有体超导电性(bulk superconductivity),其超导体积分数达到86%。
在预算分配上,韩国政府将重点放在包括人工智能半导体、尖端生物、量子技术在内的三大领域,共投入3.4万亿韩元。这些领域的选择反映了韩国政府对于未来科技发展的战略规划和投资方向,重在推动国家科技竞争力的提升。
量子计算利用了三种关键量子原理:叠加、纠缠和干涉。这些概念在量子计算机中发挥着根本作用,从而使得量子计算机与传统计算机有很大不同。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
近期,多个储能电站项目上新。■ 乐山电力:募资2亿建200MWh储能电站12月17日晚,乐山电力(600644.SH)公告,以简易程序向特定对象发行A股股票申请已获上交所受理,募集资金总额为2亿元。发
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
12月18日,珠海京东方晶芯科技举行设备搬入仪式。插播:加入LED显示行业群,请加VX:hangjia188在10月31日,珠海京东方晶芯科技有限公司发布了Mini/Micro LED COB显示产品
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
对于华为来说,今年的重磅机型都已经发完了,而明年的机型已经在研发中,Pura 80就是期待很高的一款。有博主爆料称,华为Pura 80将会用上了豪威OV50K传感器,同时电池容量达到5600毫安时。至
近期,高科视像、新视通、江苏善行智能科技等企业持续扩充COB产能。插播:加入LED显示行业群,请加VX:hangjia188■ 高科视像:MLED新型显示面板生产项目(二期)招标12月18日,山西高科
LG Display  12月18日表示,为加强OLED制造竞争力,自主开发并引进了“AI(人工智能)生产体系”。“AI生产体系”是AI实时收集并分析OLED工艺制造数据的系统。LG Display表
今天上午,联发科宣布新一代天玑芯片即将震撼登场,新品会在12月23日15点正式发布。据悉,这场发布会联发科将推出全新的天玑8400处理器,这颗芯片基于台积电4nm制程打造,采用Arm Cortex A
 “ AWS 的收入增长应该会继续加速。 ”作者 | RichardSaintvilus编译 | 华尔街大事件亚马逊公司( NASDAQ:AMZN ) 在当前水平上还有 38% 的上涨空间。这主要得益