为了满足越来越高的计算性能要求,业界不断挑战半导体工艺技术极限,研究人员开发出量子光源和光子二极管,可望为量子计算开启大门…

尽管我们经常听到业界不断挑战半导体工艺技术极限,以满足越来越高的计算性能要求,如今,光学电路也正发展成为因应这项挑战的另一种潜在途径。

最近有两项关于这个主题的研究引起了我的注意,一是由德国慕尼黑工业大学(Technical University of Munich;TU München)为主导的研究,可望为量子传感器和晶体管铺路;另一项研究来自美国史丹佛大学(Stanford University),致力于探讨光子二极管如何影响采用光组件的神经形态计算发展。

尽管这两项研究目前仍处于实验阶段,但我认为仍值得关注,以便有助于我们了解如何在人工智能 ( AI ) 等许多应用中解决高性能计算需求的问题。

量子光源照亮量子传感器和晶体管

由慕尼黑工业大学主导的这项研究集结了来自德国、美国和日本的物理学家,包括马克斯普朗克量子光学研究所(Garching)、不来梅大学、纽约州立大学(State University of New York)以及日本国家材料科学研究所(National Institute for Materials Science)的研究人员,他们成功打造出量子光源,可望为未来的光学电路发展铺路。

研究人员以几纳米(nm)的精度,将光源准确地放置在原子级的材料薄层中,使其得以实现多种量子技术应用,包括从智能型手机的量子传感器和晶体管,到用于数据传输的新式加密技术。

相较于芯片上的电路依靠电子作为信息载体,以光速传输信息的光子则将在光学电路上完成这项任务。届时,光源将会连接量子光纤电缆与探测器,从而形成这种新芯片的基本建构模块。

“这是迈向光学量子计算机发展的关键性第一步。”这项研究的第一作者Julian Klein表示:“因为对于未来的应用而言,光源必须与光子电路(例如波导)耦合,才能实现基于光的量子计算。此外,我们已经能将量子光源非常完美地整合到光子电路了。”

其关键之处在于必须确实且精确地控制与设置光源。研究人员目前已能在诸如金刚石或硅的传统三维(3D)材料中创造量子光源,但还无法将量子光源精确地放置在这些材料中。

研究人员在其于《自然通信》(Nature Communications)发表的论文中介绍,他们采用仅3个原子厚度的半导体二硫化钼(MoS2)作为原始材料层,然后再以氦离子束照射并聚焦于小于1nm表面积上。为了产生具有光学活性的缺陷,即所期望的量子光源,必须将钼或硫原子精确地轰锤出该层来。这些缺陷就是所谓激子、电子空穴对的陷阱,将会发射所期望的光子。

optical-quantum.jpg

以氦离子轰击而在二硫化钼层产生的缺陷,可以作为量子技术的纳米光源。 (来源:Christoph Hohmann/MCQST)

在这一过程中的关键设备是慕尼黑工业大学肖特基学院(Walter Schottky Institute)纳米技术和纳米材料中心的新型氦离子显微镜,它能以无与伦比的横向分辨率照射这种材料。

包括TUM、马克斯普朗克学会以及不来梅大学的研究人员还共同开发了一个理论模型,描述在缺陷处所观察到的能量状态。未来,研究人员们希望打造一种更复杂的光源模式,例如2D晶格结构,以研究多激子现象或特殊材料的特性。

光子二极管实现下一代计算与通信

另一方面,美国斯坦福大学的研究人员开发出一种纳米级光子二极管,其尺寸小到足以集成到消费电子器件,让我们得以朝着以光取代电的更快速、更节能的计算机和通信迈进。如同研究人员在《自然通信》期刊发表的论文中所强调,实现紧凑、高效率的光子二极管对于打造下一代计算、通信甚至能量转换技术至关重要。

斯坦福大学材料科学与工程副教授兼该论文的资深作者Jennifer Dionne说:“二极管普遍用于当今的电子产品,从发光二极管(LED)到太阳能电池(基本上与LED的原理相反),以及用于计算和通信的IC等。”

Lawrence说:”我们的愿景在于拥有一台全光学的计算机,可完全由光取代电,并以光子驱动更快速且高效率的信息处理。提高光的速度和带宽可以更快速地解决一些最困难的科学、数学和经济问题。”

基于光的二极管主要面临双重挑战——一是让光线仅沿着一个(向前)方向运动,打破所谓的“时间反转对称性”;其次,光比电更难操控,因为光没有电荷。以往,其他研究人员解决这些挑战的方式是让光线通过偏振器(让光波以一致的方向振荡),然后再通过磁场中的晶体材料,旋转光的偏振。最后,与该偏振相匹配的偏振器以近乎完美的透射率引导光线传播。如果光以相反方向穿过组件,那么就无法引导出光线。

Lawrence描述了这种三器件装置的单向动作,称为“法拉第隔离器”,类似于搭乘在两扇门之间移动的人行道,人行道在此可发挥磁场的作用。即使你试图倒退通过后面那扇门,该“人行道”通常会阻挡你到达第一扇门。

光束取代磁场以产生旋转

为了产生足够强大的光偏振旋转,这些二极管必须相对较大——但太大又不适用于消费类计算机或智能手机中。Dionne和Lawrence提出使用另一种光束(取代磁场)在晶体中创造旋转的方法,以作为替代方案。该光束在偏振后,使其电场呈现螺旋运动,进而在晶体中产生旋转的声波振动,使其具有类似磁场的旋转能力,并导出更多的光线。为了打造既小型且高效的结构,该实验室开发出利用微小纳米天线和“超颖表面(metasurface)”纳米结构材料以操纵和放大光线的专有技术。

研究人员并设计了一系列超薄芯片,它们成对地工作以捕捉光线并增强其螺旋运动,直到导出光线。这导致了前向的高速传输。而当向后方向照明时,声波以相反方向旋转振动,并有助于抵消任何试图退出的光。理论上,对于系统可以变得多小并没有限制。针对其仿真任务,研究人员想象该结构可以薄至仅250nm。

影响神经形态计算

研究人员特别感兴趣的是,他们的想法如何影响类脑计算机或神经形态计算机发展。这一目标还需要纳米级光源和开关等其他基于光的器件也进一步发展。 

Dionne说:“我们的纳米光子器件让我们得以仿真神经元的计算方式——赋予计算具有与大脑相同的高度互连和能量效率,但大脑的指令周期要快得多。”Lawrence则补充道,“我们尚未发现经典或量子光学计算以及光学信息处理的极限。总有一天,我们将能开发出全光学芯片,它能够完成电子产品所能执行的每一项任务,甚至更加超越。”

编译:Susan Hong

(参考原文:Optical Advances Pave Way for Quantum Sensors and Computing,by Nitin Dahad)

 

阅读全文,请先
您可能感兴趣
今天凌晨,谷歌在官方博客上公布了其在量子计算领域的重大突破——最新的量子芯片Willow不到5分钟就完成了一项“标准基准计算”。而如今最快的超级计算机完成同样的任务,足足要花费超过“10的25次方”年的时间。如果要写出来,则是 10,000,000,000,000,000,000,000,000年,这一时间跨度远超宇宙的年龄。
使用旗下CUDA-Q平台,谷歌可以在英伟达Eos超算上动用1024块H100 Tensor核心GPU,以极低的成本执行全球最大、最快的量子设备动力学模拟,可以对容纳40个量子比特的设备进行全面、逼真的模拟。
具体来说,对于涉及某些先进集成电路设计或制造、超级计算机、量子计算机及其关键部件、以及特定用途的AI系统的交易,美国将采取禁止或要求通报的措施。
尽管量子计算机在特定情况下可能比传统超级计算机具有更高的能效,但其实际应用仍面临许多挑战。Advantrade也认为,由于量子计算在实现商业化之前还有很长的路要走,因此,采取广泛的方法来提高清洁能源和能源效率是当务之急。
瑞士巴塞尔大学量子光学实验室的研究人员利用一个充满铷蒸气的毫米级玻璃单元,展示了如何在室温下将量子数据存储在气体原子中,然后利用光脉冲进行检索。
复旦大学物理学系赵俊教授团队则利用高压光学浮区技术,成功生长了三层镍氧化物La4Ni3O10高质量单晶样品,并证实了这种材料在压力诱导下具有体超导电性(bulk superconductivity),其超导体积分数达到86%。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
点击蓝字 关注我们安森美(onsemi)在2024年先后推出两款超强功率半导体模块新贵,IGBT模块系列——SPM31 IPM,QDual 3。值得注意的是,背后都提到采用了最新的FS7技术,主要性能
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
来源:IT之家12 月 18 日消息,LG Display 韩国当地时间今日宣布,已将自行开发的“AI 生产系统”投入到 OLED 生产线的日常运行之中,该系统可提升 LG Display 的 OLE
2024年度PlayStation游戏奖今日公布,《宇宙机器人》获得年度最佳PS5游戏,《使命召唤:黑色行动6》获得年度最佳PS4游戏。在这次评选中,《宇宙机器人》获得多个奖项,包括最佳艺术指导奖、最
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
又一地,新型储能机会来了?■ 印度:2032储能增长12倍,超60GW据印度国家银行SBI报告,印度准备大幅提升能源存储容量,预计到2032财年将增长12 倍,超60GW左右。这也将超过可再生能源本身
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
LG Display  12月18日表示,为加强OLED制造竞争力,自主开发并引进了“AI(人工智能)生产体系”。“AI生产体系”是AI实时收集并分析OLED工艺制造数据的系统。LG Display表
今天上午,联发科宣布新一代天玑芯片即将震撼登场,新品会在12月23日15点正式发布。据悉,这场发布会联发科将推出全新的天玑8400处理器,这颗芯片基于台积电4nm制程打造,采用Arm Cortex A
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播