绕线电阻额定功率通常为持续功率,不足以支持电动汽车应用。典型应用是大电容预充电和放电,通常称为 “软启动”。这种情况下,电阻的脉冲处理能力也非常重要。结合理论基础与热性能有限元模拟,可以确定较长脉冲持续时间内的这种能力。所得具体结果便于快速评估不断变化的客户规格,提供合适的电阻。

简介

绕线电阻额定功率通常为持续功率,不足以支持电动汽车应用。典型应用是大电容预充电和放电,通常称为 “软启动”。这种情况下,电阻的脉冲处理能力也非常重要。结合理论基础与热性能有限元模拟,可以确定较长脉冲持续时间内的这种能力。所得具体结果便于快速评估不断变化的客户规格,提供合适的电阻。

绕线电阻容许脉冲负载

绕线功率电阻一般根据持续功率确定额定功率。然而,由于(电阻成分)用量多且热容量高,电阻成分和绕线仅在中等温升过程中即可吸收大量能量。因此,绕线功率电阻是脉冲负载应用的理想选择。

额定脉冲负载能力很重要

由于频率和电压转换器的广泛使用,额定脉冲负载能力变得越来越重要。脉冲负载能力通常只按一次脉冲的一定功率或能量和持续时间象征性规定。列出几个脉冲振幅和持续时间规定脉冲负载能力的情况极为少见。如果电阻所受脉冲冲击持续时间不在数据表给出的范围内,且超出绝热边界条件的范围,则很难计算最大允许脉冲负载。而理论基础结合有限元模拟,可以计算电阻几乎无限脉冲持续间隔,即从非常短的脉冲到持续功率的热性能。

电动汽车需要脉冲负载能力

由于脉冲负载高,限制电容器充放电电流是绕线电阻在电动汽车领域中的典型应用。为了保持生产工艺尽可能简单,首选方法是将所有电子器件焊接到PCB上,而不使用 “外部” 电阻。这种情况下,可将若干小的绕线功率电阻直接焊到PCB上,取代单个大的绕线功率电阻。对于这类应用和生产,Vishay以AC-AT系列为重点,这是首款获得AEC-Q200认证的汽车级电阻。

脉冲负载产生热量

我们来看电阻散热,以便能够评估电脉冲负载的影响。一种有效方法是假定牛顿冷却定律成立,即温变率与热电阻及其冷却封装材料的温差成正比,后者温度是恒定的。在水泥型绕线电阻的情况下 (如AC-AT系列),封装材料是绕线四周的水泥。不过,以下论证也可用于漆包或充砂绕线电阻。

绝热边界条件下的脉冲负载

假定牛顿冷却定律成立,因此绕线或电阻成分瞬时温变与最大温度成正比,可得出描述绕线和电阻温度随时间变化的指数函数。

图1中,蓝线和红线分别显示瓷芯AC05-AT 47 Ω电阻及其绕线各自的脉冲负载极限。整个电阻最大脉冲负载能力通常是两条曲线的简单组合。一种方法是牛顿冷却型指数函数,图1中组合1,它远低于5秒标称功率规定的过载额定值10倍,因此低估了这一脉冲持续时间的脉冲负载能力。另一种方法,图1中组合2,高估了所示扭折处(约0.05秒处)脉冲负载能力,因为计算绕线温度极限时未考虑瓷芯的热量。

脉冲负载FE模拟

利用有限元(FE)模拟,通过电阻器内的热流和温度分布很容易看出整个AC05-AT电阻在脉动电负载下缓慢变热。电阻线在脉冲过程中升温,然后冷却。电阻所有其他部分延迟一定时间被热脉冲加热。脉冲负载持续时间在有限元模拟中不重要,只要边界条件得当。因此,从绕线(ms 范围)到电阻近乎连续负载 (100s 范围)绝热角度看,几乎可以模拟电阻和绕线任何脉冲持续时间内的温度。从而可根据绕线规定的最大允许温度来确定允许的最大电脉冲负载。

延伸归纳

通过延伸绕线热扩散特征时间,可以归纳多个脉冲持续时间的有限元模拟结果。从而确定修正系数,结合指数函数,根据牛顿冷却定律给出温度。

非绝热边界条件下的脉冲负载

上述修正系数可从绕线角度计算非绝热边界条件下的脉冲负载极限(图2,非绝热极限)。不过,未涵盖长脉冲持续时间整个电阻的脉冲负载极限。但是,如果用整个电阻热扩散特征时间延伸较长脉冲持续时间,非绝热极限曲线可以涵盖连续负载极限曲线(图2)。

用于其他阻值和电阻

通过适当延伸,可以归纳特定电阻(本文为AC05-AT,47 Ω)热状态的有限元模拟结果。这样,所得结果不仅可以用于所有阻值(绕线配置)的AC05-AT,而且可以应用于所有其他AC-AT类型的电阻,因为它们的结构相似。

这种方法甚至可以用于所有其他相似类型的电阻,如G200系列 ,无需额外的FE模拟,因此效率极高。对于客户的好处是能够及时准确地解决脉冲负载能力的问题。

20190621-600.jpg

图1: R = 47 Ω瓷芯AC05-AT(蓝曲线 )和电阻线 (红曲线 )脉冲负载限制。两条曲线通常组合在一起:组合1(黑曲线)低估允许的过载(蓝点);组合 2(绿线)高估所示扭折处脉冲负载极限(约0.05 秒)。

20190621-601.jpg

图2: 从绕线角度看非绝热边界条件下最大允许脉冲负载(蓝曲线),根据相应热扩散特征时间进行校正 (红曲线)。常见极限曲线很大程度上低估脉冲持续时间的脉冲负载能力,图中所示从0.1秒到10秒不等,供参考(黑虚线)。

本文同步刊登于电子工程专辑杂志2019年6月刊

您可能感兴趣
功率器件(如MOSFET、IGBT和二极管)需要适当的封装设计,以优化散热、提高效率和确保可靠性。热管理对于避免过热、保持性能和延长器件使用寿命至关重要。
随着GaN器件在电机驱动器和电动汽车等高电压、高频率应用中的使用,散热、封装和可靠性方面的问题也开始显现出来。通过解决重大的热管理问题,创新封装技术的最新进展旨在缓解这些挑战,从而降低成本并提高整体系统可靠性。
随着先进芯片设计格局的迅速演变,新的验证和确认方法变得至关重要。众多前沿设计由系统公司在先进的工艺节点下完成,具有大量的逻辑门,并依赖于复杂的片上网络、SRAM池以及精密的电源、时钟和测试架构。
太倒霉了,把儿童手表的充电线,接到了骨传导耳机上,当下耳机就被烧了!是手表充电线电流过大导致的损坏?还是正负极反接造成的?
业界正从“引线框架”设计转向在具有复杂布线图案的多层电路衬底上安装IC,这一转变推动了对先进IC衬底的需求,并催生了对新型绝缘材料的迫切需求。
碳化硅技术正在彻底改变电力电子行业,使各种应用实现更高的效率、更紧凑的设计和更好的热性能。ST、安森美、Wolfspeed、罗姆和英飞凌等领先制造商均提供SiC解决方案,可根据特定用例提供分立器件、功率模块或裸片形式的产品。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
千万级中标项目5个,百万级中标项目12个。文|新战略根据公开信息,新战略移动机器人产业研究所不完全统计,2025年2月,国内发布35项中标公告,披露总金额超15527.01万元。(由新战略移动机器人全
本文来源:智能通信定位圈最新消息显示,全球领先的厘米级定位导航企业苏州天硕导航科技有限公司(简称“天硕导航”)近期宣布获得数千万元级的A轮融资。本轮融资目的是扩展业务、产品开发和团队建设,深创投作为本
本文来源:物联网展行业变革:“位置即服务”正催生万亿级市场裂变数据洞察:2025年全球GNSS市场规模预计达680亿美元,年复合增长率28%,其中智能穿戴、资产追踪、工业安全三大场景贡献超50%。增量
引言 嘿,各位电动汽车的爱好者们!咱们今儿个就来聊聊电动汽车里那些“看不见,摸不着”,但又至关重要的零部件。要说电动汽车这玩意儿,那可真是科技含量满满,各种高精尖的技术都往里堆。但要让这些
差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。差分电路的电路构型    上图是差分电路。    目标处理电压:是采集处理电压,比如在系统中像母线电压的采集处理,
Silicon Labs(芯科科技)宣布其MG26系列无线片上系统(SoC)现已通过芯科科技及其分销合作伙伴全面供货。作为业界迄今为止最先进、高性能的Matter和并发多协议解决方案,MG26 SoC
先问大家一个问题:你有多久没看电视了?对老局来说,最近这几年除了春晚和国庆阅兵,其他情况下,基本已经不会看电视了。当然了,连着PS5打游戏那是另外一回事。不过,虽然我们不怎么看电视了,但电视的市场却并
新思科技与国际半导体产业协会基金会(SEMI 基金会)近日在新思科技总部宣布签署一份谅解备忘录(MoU),携手推动半导体芯片设计领域的人才发展。据预测,到 2030 年,全球半导体行业将需要新增 10
新品EVAL-2ED3146MC12L–带辅助电源的6.5A双通道隔离栅极驱动器评估板EVAL-2ED3146MC12L评估板用于评估功率半桥电路中的2ED3146MC12L 6.5A隔离栅极驱动器I