得益于在亚马逊Alexa 和苹果Siri 等消费设备和服务中的广泛应用,机器学习和人工智能 (AI) 已成为主流技术。事实证明,这些系统能精准识别会话语音并在复杂视觉场景中辨认和说出对象名称。Facebook 称其每天运用该技术执行约 60 亿次翻译任务。然而,人工智能的应用远不仅限于消费者服务领域。

得益于在亚马逊Alexa 和苹果Siri 等消费设备和服务中的广泛应用,机器学习和人工智能 (AI) 已成为主流技术。事实证明,这些系统能精准识别会话语音并在复杂视觉场景中辨认和说出对象名称。Facebook 称其每天运用该技术执行约 60 亿次翻译任务。然而,人工智能的应用远不仅限于消费者服务领域。

人工智能在工业控制和类似应用领域就拥有大量实际运用。这些应用对机器学习的部署提出了更多额外要求,例如实时性能管理和商业敏感数据处理等。而人工智能技术具备对复杂数据进行分段和分类的能力,因而正逐渐成为下一代机器状态监控系统和流程优化的主要选择。

预测性维护为联网工业应用提供高投资回报率

对于联网工业应用而言,可实现高投资回报的预测性维护是一种备受追捧的应用实例。预测性维护中的状态监控不仅可以减少现场检查的频次,还能降低维护成本。如果系统能准确地识别出设备部件的剩余使用寿命,便可以把部件更换时间安排在低产时段,避免作业期间发生故障的风险;而若采用的是故障发生再维修的方案,则需组建一支成本更高昂的快速响应团队。部署预测性维护的企业已经实现了20% 到 25% 的效率增益。

人工智能在预测性维护等应用环境中的优势在于它能从避开确定性算法的数据中找出规律。例如,温度和振动偏差通常呈正态,但某些组合和时间序列加在一起则可能产生问题。基于人工智能的模型可以解译大量的时间序列数据,从而更好地了解特定部件的故障状况。

通过本地处理为基于云的人工智能系统添砖加瓦

当前,人工智能系统仍然存在一个问题,即常常依赖于云服务器中可用的计算能力。而在消费者使用的人工智能应用中,只有极少数能够对使用机器学习构建的模型执行本地推断。所谓推断,就是将新输入值应用于训练模型,使模型能够确定输入值含义的过程。

对于工业企业用户而言,这种远程执行问题重重,原因有以下几点:其一是敏感运营数据的机密性;其次是及时性。许多基于云的人工智能系统执行任务,如将文本从一种语言翻译成另一种语言时,出现可变延迟,甚至长延迟都是可以接受的。但对于采用人工智能进行运行控制的工业系统而言,情况却并非如此。其三,通信带宽可能不足,以致无法将充足的数据传送至云端进行可靠推断。这使得对人工智能模型的本地处理,尤其本地推断能力的需求更加强烈。而对于模型训练的计算密集型过程,将其卸载到强大的云服务器通常将还是较为明智的做法。

实现上述本地处理有两种方法。一种是使用设备自身可用的计算能力,不过设备可能没有充裕的备用处理能力来运行异常复杂的模型。若基于设备的处理不可行,另一种办法则是把处理过程全部或部分卸载到其他设备。例如,设备本身运行简化后的人工智能模型,执行数据初始分析,而附近的网关或板级计算机负责运行功能更强大的模型。本地网关甚至可以自行训练并优化模型,无需将训练传递到云服务器上。

设备上的人工智能可提供最低的通信延迟。然而,本地网关具备更快的处理速度,可能超过性能较低的设备处理器,并能提供最佳延迟和吞吐量参数。无监督机器学习系统可以在传感器读数中找出规律,并将侦测到的规律而非原始传感器数据传送至网关或本地服务器,这极大地减轻了通信负担。随后,使用有监督的人工智能技术训练出的模型就可以分析这些规律并确定它们的含义。

20190529-008.jpg

 

寻到合适的学习技术解决方案

人工智能可算作一种强大的工业控制技术,然而相关用户却面临着缺乏充分利用这种技术所需的深度知识和经验的问题。开发人员首当其冲,面临着采用哪种机器学习策略的抉择。当前,大多数基于云的人工智能系统都使用深度学习:一种需要使用功能强大的计算机的计算密集型技术。但深度学习只是实现人工智能众多方法中的一种。它属于一种更宽泛类别的有监督学习技术,更适用于工业系统处理的数据类型。有监督学习是指训练数据已预先标记。标签与输入数据的匹配使深度学习系统可以对以往从未见过的图像进行分类。

机器学习模型的训练不仅仅依赖于已标记数据。聚类等无监督机器学习算法可以在没有其他额外辅助的情况下找出数据规律,该过程在使用多个传感器或输入的时间序列行为很关键的工业控制系统中非常有用。以对机床的状态监控为例,振动强度可能无法说明有问题,但可能是该过程的结果。时间序列数据的移动规律配上温度的快速变化,可能表明存在需要维护的问题。若直接使用源数据无法显示出清晰的规律,数据将被划分成易于区别的多个簇,从而揭示出异常值。工业开发人员需要解决的问题是如何确定目标应用中需部署的机器学习形式。

Octonion为此开发出了一项解决方案Brainium,一款可为开发人工智能解决方案和物联网系统的工程师大幅缩短学习曲线的架构。Brainium高度灵活,可在设备、网关和云端三层运行,能够满足工业用户的需求。用户可自行确定适合其所需部署环境的最佳方案。

人工智能已经实现了向云、网关及边缘的过渡,并且当前边缘与网关的集成也已被证明可以扩展人工智能的应用范围。人工智能技术显然已经成为各种工业应用中不可或缺的组成部分。哪种人工智能方案更适合某种特定应用情景完全取决于应用开发人员。可喜的是,目前已经有许多解决方案可供选择,且能够满足当前以及未来相当长一段时间内对数据管理和控制的要求。

 

阅读全文,请先
您可能感兴趣
9月10日,苹果发布了一系列新品,包括iPhone 16系列手机、Apple Watch Series 10智能手表和AirPods 4耳机。发布会后网上响起了一片吐嘈声,带着这些吐槽,我们来看看这次苹果到底有没有新玩意……
Rambus的HBM4控制器IP还具备多种先进的特性集,旨在帮助设计人员应对下一代AI加速器及图形处理单元(GPU)等应用中的复杂需求。这些特性使得Rambus在HBMIP领域继续保持市场领导地位,并进一步扩展其生态系统支持。
2016-2023年中国独角兽企业总估值由近5000亿美元持续攀升至超1.2万亿美元,其中在2020年首破万亿美元。
HBM4作为第六代HBM芯片,不仅在能效上较现有型号提升40%,延迟也降低了10%,成为各大芯片厂商竞相追逐的焦点。
此次财报也从侧面反应了半导体行业在AI业务上的强劲增长势头,但同时也暴露出非AI业务增长乏力的困境。
尽管CMA批准了交易,但业内专家指出,微软通过此次交易获得了Inflection AI的核心技术和团队,这相当于以较低的成本实现了对Inflection AI的变相收购,进一步加强了微软在AI领域的实力。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
点击蓝字 关注我们德州仪器全球团队坚持克服挑战,为电源模块开发新的 MagPack™ 封装技术,这是一项将帮助推动电源设计未来的突破性技术。  ■ ■ ■作为一名经验丰富的马拉松运动员,Kenji K
文|德福很多去成都旅游的朋友都有个疑惑——为什么在成都官方的城市标志上看不到熊猫,而是一个圆环?其实这个“圆环”大有来头,它被唤作太阳神鸟,2001年出土于大名鼎鼎的金沙遗址,距今已有三千余年历史。0
‍‍近期,IC 设计大厂联发科宣布了2024年上半年度的员工分红计划,与8月份薪资一起发放。据外界估算,按照上半年税前盈余约648.66亿新台币(约 144.42 亿元人民币)进行估算,此次分红总额接
在当今人工智能飞速发展的时代,AI Agent正以其独特的方式重塑着企业的生产运营方式。澜码科技作为AI Agent领域的先行者,其创始人兼CEO周健先生分享了对大模型与AI Agent发展现状的深刻
会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!逐个击破现有痛难点。文|新战略半导体行业高标准、灵
近日,又一国产SiC企业宣布实现了主驱突破,并将出口海外。据“行家说三代半”的追踪统计,自2022年起,国内主驱级SiC器件/模块开始在多款车型中得到应用,尤其是2024年,本土供应商的市场份额显著上
疫情后的劳动力囤积和强有力的员工保护规则掩盖了德国高薪制造业工作市场令人担忧的变化。根据联邦劳工办公室的数据,欧元区最大经济体德国的失业率在2019年春季曾达到历史最低点4.9%,现已上升至6%。虽然
[关注“行家说动力总成”,快速掌握产业最新动态]9月6日,据“内江新区”消息,晶益通(四川)半导体科技有限公司旗下IGBT模块材料和封测模组产业园项目已完成建设总进度的40%,预计在明年5月建成。据了