Cadence公司的Quantus中提供的IVMF功能在各个工艺节点都具有很高的精度,对于Metal Fill的模拟可以帮助工程师在布局绕线的同时考虑到Metal Fill对于芯片整体的影响,从而有效提高整体的设计效率,保证整体设计周期。

一、Dummy Metal fill对于先进工艺的影响

化学机械抛光 (Chemical-mechanical polishing, 简称CMP) 是半导体工艺的一个步骤。 但是其也有自身的缺陷,例如某些没有任何互联金属线的区域会产生大片的凹陷区域(如下图所示),经过了CMP这道工序之后也依然存在,其危害则是会导致信号延迟。这种情况在电路设计中非常普遍,例如在memory设计或者模拟电路设计中经常会有大片没有信号走线的区域存在。

cadence1.jpg

那么如何去规避这种危害呢?一种有效的方法就是去填充Dummy Metal Fill。目前的EDA公司中,Cadence公司的工具PVS Pegasus已经提供了成熟的插入Dummy Metal Fill的功能。以下截图为从Virtuoso Layout中,有无插入Metal Fill的对比。

cadence2.jpg 

未加入Metal Fill      

 cadence3.jpg

                                                                                                                    加入Metal Fill之后

 一般来说,填充Dummy Metal Fill工作是在整个设计周期的最后,所有的DRC/LVS 时序分析签收后完成的。这些增加的金属层次所产生的额外的寄生电容于是就被忽略了,即使它们对芯片的整体有很大影响,使得芯片的速度变慢。

在以往的40nm工艺中,这些额外的寄生电容对于时序的影响大致在0.12%左右。这个影响有时甚至比静态时需分析(STA)SPICE仿真之间的误差还要小,我们完全有理由之间忽略它。

然而在28nm工艺中,这些寄生电容的影响就提升到了2.5%。在16nm工艺中,其平均误差会达到4%。在更先进10nm7nm及以下工艺中,其影响会更大,达到甚至超过5% 。这样的误差就无法再忽略了。

cadence4.jpg  

  28nm工艺中有无加入MF的平均偏差在2.5%     

cadence5.jpg

     16nm 工艺中有无加入MF的平均偏差在4%

 如果去计算这些dummy金属带来的影响也会带来问题。整个芯片需要在增加了这些新增的金属图形的基础上去重新分析。包括了再重新做一次完整的寄生参数的抽取,再带入这些新增的寄生参数做完整的物理验证,时序验证,功能验证。如果最后时刻发现了问题,这样就必然会影响整个设计周期。

所以,如果能在设计周期的初始阶段就有效预估这些dummy metal fill会产生的影响的话,就能在设计时直接加以考量,避免不必要的设计周期延期。

由此,Cadence公司在Quantus工具中推出了Integrated Virtual Metal Fill (IVMF)功能。区别于以往的直接插入dummy metal fill来进行各种分析,IVMF功能可以直接在参数提取过程中根据实时的模型文件 (rule table) 去模拟dummy metal fill的影响,直接预估它们会带来的寄生参数的影响,由此直接进行各种物理信息及时序信息的仿真。

二、Quantus Integrated Virtual Metal Fill (IVMF) 解决方案

对于其他静态时序分析工具来说,IVMF只是一个提取寄生参数的工具。但当它和Innovus相结合使用的时候,能更紧密地与布局布线工作结合起来,这样才能最大发挥其优势。

Cadence的数字布局绕线工具InnovusRC寄生抽取中提供了不同的模式(effort-level MediumHigh Signoff)。一般在placementCTS时采用Medium mode抽取;Post route ECO 优化时使用High mode抽取,Signoff mode一般在最终时序签收时采用。

IQuantus (high effort-mode in Innovus) Quantus都支持IVMF功能。IVMF可以采用和真实metal fill相同的插入规则来进行模拟并抽取。同时,对于先进工艺节点中有color和非color的设计都可以支持。此外,还可以支持track-based或者non-track-based的方式进行模拟插入。

借助这样的结合,IVMF就可以在保持需要的精度的情况下大幅提升速度, 整体的提升在3-4倍左右。这是IVMF的最重要的优势。 另一个优势就是极其简单的使用方法。本文会在下面的几个子章节里详细介绍。

2.1 精度与速度的赛跑

IVMF的模式抽取,会比在实际版图中插入metal fill之后进行抽取,提升15%-20%的速度。如果算上传统的插入metal fill这一步骤所耗费的时间,并进行寄生参数抽取的整个过程,采用IVMF的方法进行寄生参数抽取可以提升3-4倍速度。如下表所示,我们可以看到IVMF在整体运行时间和消耗资源方面,在设计的每一步骤都比插入真实MF有很大的提升。

cadence6.jpg

 IVMF与其它MF方法耗时比较

通过对于IVMF和实际Metal Fill的结果进行分析对照之后,业界对于其精度也颇为认可。有了精确的模拟,设计者才可以有效减少时序分析和ECO和最终signoff周期。

下图显示的是IVMF在某代工厂的质量检测样本中和实际Metal Fill进行的对比,其误差也是非常微小,完全可以达到研发设计的要求。以下将对其精度进行分析。

cadence7.jpg

以下图表中对基于非track基准(non-track based)IVMF和实际MF进行了对比,其误差也非常细微。对于总电容,平均偏差在0.06%以内,标准偏差在1.61%以内。对于电阻,平均偏差在0.27%以内,标准偏差在0.8%以内。

cadence8.jpg  

cadence9.jpg

IVMFReal MF对于总电容、电阻差异对比图

如下表所示,采用IVMF和实际Metal Fill在时序分析中对比,最差slack路径的误差在4.85%以内,总slack误差在7.17%以内,时序不满足的路径总误差为3.23%

 cadence10.jpg

以下是以track为基准(Track Based Metal Fill, TBF)16nm设计上对IVMF中电容精确性的对比。TBF插入规则中,fill的宽度以及其之间的间隔是固定的,只有长度可以有区别。如下图()所示,实际的GDS MF插入后,对于整个设计的总体寄生电容的增加在4%左右。其中某些net的电容增加甚至会达到20%-50%,对于这样幅度的增加,在芯片设计中是无法接受的。

下图()所示中,我们对IVMF的寄生抽取和GDS MF的抽取结果进行对比,其最大误差在1%左右。由此通过采取IVMF的方法,在此芯片设计中,有效的提高了工程师的工作效率,也节省了整个设计周期。

 cadence11.jpg  

cadence12.jpg

之前的段落中提到过IVMF与实际MF之间稍有误差,那么这些误差为什么会产生呢?从实际插入MF的部分来看,MF生成工具对每一层需要填充金属层都会提供多个不同的插入规则 (rule),针对大小、间隔不同的区域,所插入的实际MF其大小,间距都会有所不同,如下图所示。

 cadence13.jpg

IVMF对同一金属层,出于对计算时间的考虑,目前只支持按照同一种规则去模拟MF。针对大小不一的这些MF,推荐使用较小的MF规则去进行模拟。这样IVMF模拟出来的寄生参数更接近实际情况,对于整体的时序分析的影响最小。

2.2 清晰简单的用法

使用IVMF的时候,只需要添加两个额外的规则文件,scheme 文件和rule文件。Scheme文件用来定义每一层金属线的名字和其对应的层次分类的名字,以及其在绕线时的走向。Rule文件则是用于定义Dummy Metal的插入规则。

Metal Scheme 文件:

金属层名   金属层类名   布线方向

。。。。。。

IVMF 规则文件:

金属层类名        布线-MF 间隔 等等

。。。。。。

       以上规则文本可以根据设计手册中的MF规则来生成,或者根据实际的MF在版图中的测量来生成。需要的话,可以参照从实际MF提取的结果调节IVMF规则表的精度。一旦确认了精度,规则表可适用于相同工艺的设计版图。

       Quantus会在进行寄生参数提取时根据版图的环境和上述规则表,在几乎不需要额外运行时间的情况下实时模拟精准的MF的效果。

三、先进工艺(7nm)研发中实例分析

7nm的设计中,分析表明metal fill会对较大的net (>50fF) 产生多达17%Tcap增长,从而对于时序会有极大的影响。通过运用Quantus IVMF功能,我们发现对于这些大net上的寄生参数的抽取有了极大的帮助。对于整个设计,总体的平均偏差为0,标准偏差在1.55%以内。对于这些较大的net,偏差也不会超过1-2%

 cadence14.jpg  

有无MF最大误差在17%左右  

cadence15.jpg

            IVMFReal MF最大误差在1-2%左右

另一个N7的设计中表明,某些metal fill在较小net (<20fF) 上对寄生电容的影响可以多达40%Quantus IVMF功能不仅显著改进了这些小net上的寄生信息的抽取,而且对于整体net的分析也达到了有效提升。

cadence16.jpg

有无MF最大误差在40%左右    

 

cadence17.jpg

                        IVMFReal MF最大误差在2%左右

 四、总结

Quantus中提供的IVMF功能在各个工艺节点都具有很高的精度,其对于Metal Fill的模拟可以帮助工程师在布局绕线的同时考虑到Metal Fill对于芯片整体的影响,从而有效提高整体的设计效率,保证整体设计周期。

阅读全文,请先
您可能感兴趣
过去几十年来,全球能源消耗稳步增长,预计还会进一步增长。
光电探测器的性能因材料不同、结构不同、制备工艺及应用场景的不同而存在较大的差异。性能指标之间往往存在制约,如暗电流与输出电流、灵敏度与响应度、可靠性与灵敏度等需要权衡。对于性能表征也是如此,例如高响应度与高精度电流表征无法同时进行。
SiC的特定特性要求对MOSFET器件和栅极驱动电路进行仔细选择,以确保安全地满足应用需求,并尽可能提高效率。在本文中,我们将讨论为SiC MOSFET选择栅极驱动器时应考虑的标准。
由于在满足所有要求方面存在不同的权衡,因此很难采用一种适用于所有情况的电流检测方法。
宽禁带半导体(例如SiC和GaN)在可靠性、能效、功率密度和降低成本方面具有重要优势。
ITSA报告对当前的V2X应用进行了分析,并对两个关键的V2X部分进行了展望——使用5.9GHz频谱的直连V2X和使用4G LTE和5G蜂窝通信的网联V2X。此外,该报告还对未来在5.9GHz当前30MHz带宽限制之外的扩展进行了展望。
• 目前,iPhone在翻新市场中是最热门的商品,并将长期主导着翻新机的平均销售价格。 • 全球翻新机市场持续向高端化发展,其平均销售价格(ASP)现已超过新手机。 • 新兴市场是增长的最大驱动力,消费者对高端旗舰产品有着迫切需求。 • 由于市场固化和供应链的一些问题限制推高中国、东南亚和非洲等大市场的价格。 • 2024年,这些翻新机平均销售价格将首次超过新手机。
从全球厂商竞争来看,三季度凭借多个新品发布,石头科技市场份额提升至16.4%,连续两季度排名全球第一……
最新Wi-Fi HaLow片上系统(SoC)为物联网的性能、效率、安全性与多功能性设立新标准,配套USB网关,可轻松实现Wi-Fi HaLow在新建及现有Wi-Fi基础设施中的快速稳健集成
其中包含Wi-Fi 7和蓝牙5.4 模组FME170Q-865、Wi-Fi 6和蓝牙5.4 模组FCS962N-LP、Wi-Fi 6和蓝牙5.3模组FCU865R 、独立Wi-Fi和蓝牙模组FGM840R、高功率Wi-Fi HaLow模组FGH100M-H……
来源:《中国半导体大硅片年度报告2024》2016 年至 2023 年间,全球半导体硅片(不含 SOI)销售额从 72.09 亿美元上升至121.29 亿美元,年均复合增长率达 7.72%。2016
01周价格表02周价格观察硅料环节本周硅料价格:N型复投料主流成交价格为40元/KG,N型致密料的主流成交价格为38元/KG;N型颗粒硅主流成交价格为35元/KG。供给动态头部料企继续推进减产策略,月
近日,联想在CES 2025展会上展示了全球首款卷轴屏PC——ThinkBook Plus Gen 6。据悉,ThinkBook Plus Gen 6卷轴屏AI PC的核心魅力在于其独有的可卷曲显示屏
点击蓝字 关注我们SUBSCRIBE to USImage: The Verge据悉,OpenAI已经制定了成为一家营利性公司的计划。在近日发布的一篇博客文章中,OpenAI的董事会表示,将把公司现有
当地时间2025年1月7日,全球备受期待的技术盛宴——国际消费电子展(CES 2025)在美国拉斯维加斯盛大开幕。作为显示领域的领军企业,天马携一系列前沿创新技术和最新智能座舱解决方案惊艳登场,带来手
亚化咨询重磅推出《中国半导体材料、晶圆厂、封测项目及设备中标、进口数据全家桶》。本数据库月度更新,以EXCEL表格的形式每月发送到客户指定邮箱。中国大陆半导体大硅片项目表(月度更新)中国大陆再生晶圆项
近日,由工业和信息化部、国家广播电视总局、国家知识产权局联合评选的“2024年度视听系统典型案例”公示名单正式发布。聚飞光电自主研发的大尺寸 Micro LED 超高清显示屏系统经专家评审及公示程序,
戴尔科技AI PC产品组合助力终端用户释放创造力并提高工作效率。 戴尔科技统一旗下产品组合品牌命名,旨在帮助用户更轻松、快速地找到相匹配的PC、配件及服务。 搭载英
点击蓝字 关注我们SUBSCRIBE to US如果你听说过深度伪造(deepfakes),即人们做着从未做过的事或者说着从未说过的话的高度逼真视频,你可能会认为这是一种可疑的技术发展成果。例如,它们
日前,奥康国际发布公告表示终止发行股份购买资产。根据公告,2024 年 12 月 24 日,奥康国际披露《关于筹划发行股份购买资产事项的停牌公告》,公司拟筹划以发行股份或支付现金的方式购买联和存储科技