选择最合适的网络布局对于任何系统的高效运行至关重要。对于无线网络,这是高度相关的,因为它与延迟、功率、速度和冗余等因素息息相关。

选择最合适的网络布局对于任何系统的高效运行至关重要。对于无线网络,这是高度相关的,因为它与延迟、功率、速度和冗余等因素息息相关。

现代网络由许多不同类型的设备组成,比如路由器、智能手机、蓝牙耳机和智能灯泡,网络上的每个设备都被称为“节点”。

网络拓扑描述了网络中不同节点如何相互连接和通信。

简单的网络拓扑

业界存在许多种网络拓扑,每种拓扑都具有不同的优点和缺点。

最简单的网络是点对点的。这是两个节点之间的单一网络连接。实际上,除了某些关键或特殊应用之外,现在很少需要仅仅连接两个节点。一个现代的示例是通过蓝牙进行的即席(ad-hoc)连接,用于苹果的Airdrop文件共享服务或者模型飞机等物品的远程控制等。

在网络增添更多节点的最简单方法是使用菊花链接,它有两种形式:线性和环形。

线性菊花链是将第三个节点连接到现有节点之一,第四个节点连接到第三个节点,依此类推。这是一种简单的方法,但随着添加更多的节点,这种方法很快变得不切实际了。

在环形网络中,第三个节点同时连接到两个现有的节点,每个其他节点添加在两个现有节点之间,以创建环路。每个节点恰好连接到另外两个节点。数据在一个方向或两个方向上围绕环形传输,每个节点检查数据并对其进行操作,或者重新传输直到它到达目的地。

菊花链可用于为连接设备(比如智能灯泡)创建网络,但对于大多数用例,都有其它更好的解决方案。

用于扩大规模的解决方案

一旦我们向网络增添了大量的节点,点对点和菊花链就变得效率低下。如果位于1,000个节点环形的两侧的两个节点想要通信,那么它们的数据必须首先通过500个其他节点。菊花链也容易出现错误,因为单个故障节点可能会导致大量中断,并且在最坏的情况下会导致消息根本无法通过。

在总线拓扑中,我们将所有的设备连接到中央主干(称为总线),这类似于线性拓扑,但是具有带着多个单一分支的单一线路。这是有线网络中的常见拓扑,但在无线世界中没有任何真正类似的拓扑。

虽然了解上述这些拓扑非常重要,但在现代无线生态系统中,这些拓扑均不常见。现在,我们将去了解更常见的架构。

无线网络的星形拓扑

目前对无线网络最有用的拓扑是星形拓扑,其中,每个节点都连接到一个中心集线器,该集线器将数据分发到任何需要到达的位置。

最明显的示例是家庭网络,所有节点(电话、打印机、平板电脑等)都连接到无线接入点(集线器),这通常既是本地网络的路由器,也是到互联网的桥梁。星形网络非常适合同时无缝连接有线和无线节点。

这是实现无线网络的一种简单方法,但它存在两个主要难题。处于系统中心的集线器是单一故障点。如果集线器发生故障,整个网络将不再存在,导致设备根本无法通信。此外,星形拓扑中的设备均必须位于集线器的一定距离内。

为了增加弹性,以及通信范围,我们需要更聪明的点子。

Mesh网络

Mesh网络有两种类型,完整的和部分的。在完整的Mesh网络中,每个节点直接连接到每个其他节点,这对弹性很有帮助,但无法增加通信范围。这些网络仅仅在100%冗余是必不可少的军事网络等应用中实现。

另一方面,部分Mesh网络的每个节点都连接到一个或多个其他节点。连接到多个其他节点增加了弹性,因为没有了单点传输失败。同时,它还改善了通信范围,因为节点A可能与节点C不在直接通信范围内,但是消息仍然可以通过节点B来传输。

Mesh网络是物联网中的最大发展领域,它们理论上允许无限的设备跨越无限的距离来连接。使用Mesh网络,具有弹性的智能家居、智能企业和智能城市变成为现实。

混合网络

如今,使用单一网络拓扑的示例实际上越来越少。大多数网络都是结合了一种或多种不同的拓扑结构的混合体。

树形网络是在一个总线网络上将多个星形网络连接在一起。当存在多个节点集群(例如在WAN网络中)时,通常会使用此种方法。在这种情况下,每个节点连接到路由器以形成星形网络,然后将各个路由器连接在一起,在它们之间创建总线连接。这也可以通过雪片(Snowflake)网络完成,该网络将多个星形网络连接到单一中心节点,有如星形的星星(Star of Stars)。

互联网是终级的混合网络,它包括许多每种类型的单独网络,其中,总线、星形、环形和Mesh网络都组合在一起。

标准化

增加Mesh网络采用的关键是标准化。由于Mesh领域中的参与厂商急于通过业界对Mesh网络的需求来获利,因此通常会出现多种标准。尽管我们可能会看到市场上出现一个事实标准,但是,许多不同的标准将会在这个细分市场中共存。

目前的智能家居可能存在来自一家供应商的Mesh网络灯泡和来自其他供应商的加热控制Mesh网络,这两个网络都连接到常规的星形网络,允许用户通过智能手机来控制它们。显然,这种方案是低效的,从长远来看对大家都没有好处。

业界的主要目标是建立标准的Mesh网络,所有的节点,无论是智能手机、笔记本电脑、灯泡还是传感器,都可以加入其中。在这个目标实现之前还有一段路要走,不过,如果一旦实现,物联网将能够发挥真正的潜力。

阅读全文,请先
您可能感兴趣
人类的发明,即工程系统,依赖于物理学和数学基本原理,如麦克斯韦方程、量子力学和信息论等,以实现特定目标。然而,随着工程系统复杂性和规模迅速增长,其子组件的功能可能呈现出非线性特性,这使得基于第一原理的设计方法受到限制。
过去几十年来,全球能源消耗稳步增长,预计还会进一步增长。
光电探测器的性能因材料不同、结构不同、制备工艺及应用场景的不同而存在较大的差异。性能指标之间往往存在制约,如暗电流与输出电流、灵敏度与响应度、可靠性与灵敏度等需要权衡。对于性能表征也是如此,例如高响应度与高精度电流表征无法同时进行。
SiC的特定特性要求对MOSFET器件和栅极驱动电路进行仔细选择,以确保安全地满足应用需求,并尽可能提高效率。在本文中,我们将讨论为SiC MOSFET选择栅极驱动器时应考虑的标准。
由于在满足所有要求方面存在不同的权衡,因此很难采用一种适用于所有情况的电流检测方法。
宽禁带半导体(例如SiC和GaN)在可靠性、能效、功率密度和降低成本方面具有重要优势。
大多数研发人员和导热界面材料配方设计师可能会推荐使用具备诸多优异特性的硅。然而,也存在一些例外情况。这些问题强调了在选择导热界面材料时考虑终端产品最终应用的重要性.....
在与芯科科技(Silicon Labs)首席技术官Daniel Cooley的交谈中,我们了解到该公司在物联网(IoT)和智能边缘领域所发挥的作用和未来发展。
虽然绕过产品防伪保护的手段变得越来越高级,但是最新的 NFC 芯片技术提高了信息安全性,让品牌能够保护知识产权,预防客户误买假冒商品。
西门子推出Simcenter更新版本,助力客户简化工作流程,加快航空航天认证,同时提供深入洞见
文|温风回顾完过去,再聊聊新的一年,沃尔沃从产品层面,还有哪些亟待解决的问题?首先是纯电高端化的挑战。这不是沃尔沃一家的命题,宝马i5/i7,奔驰EQE/EQS,没有一款对自身旗下传统动力车型产生强烈
 /记得星标我/比大部分人早一步看见未来在日新月异的数字浪潮中,中小企业作为国家经济的生力军,正站在数智化转型的十字路口。中国移动,作为信息通信领域的领军者,积极响应国家政策,以科技创新为笔,绘制出一
该计划旨在降低成本,减少网络风险和运营的复杂性首批合作伙伴包括 Forescout、Instrumentix 和 Nozomi Networks是德科技(NYSE:KEYS)推出网络可视化合作伙伴计划
互联网与科技企业每日重点资讯文 | 苏丁巨头动向特朗普给予TikTok禁令75天宽限期美国总统特朗普当地时间20日签署行政令,要求短视频社交媒体平台TikTok“不卖就禁用”法律在未来75天内暂不执行
“什么是5G,用户说了算”。记得在5G商用之前,当人们都在谈论5G是什么、5G到底能做啥时,这句话引起了业界广泛共鸣——5G建设和发展需倾听用户的声音,以消费者和各行各业日益增长的需求为导向。时至今日
现货促销让采购/更简单/更高效为了更好地帮助大家采购芯片,实现供需资源的无缝对接。AMEYA360决定开启【现货促销】专栏,通过AMEYA360微信公众号,每天推送原厂现货促销物料,助力广大用户制定更
本文来源:智能通信定位圈《2025中国高精度定位技术产业白皮书》正在调研阶段,目前已经参与调研的企业有:长沙驰芯半导体科技有限公司北京瀚巍创芯电子技术有限公司深圳捷扬微电子有限公司深圳芯邦科技股份有限
目前,联想已经在印度工厂生产笔记本电脑和台式电脑,后续还将生产 AI 服务器,而摩托罗拉智能手机、平板电脑和笔记本电脑也在由代工商 Dixon Technologies 进行生产。联想印度公司总经理
汽车AI革命已来。在2025年伊始开幕的CES展上,AI汽车、AI座舱无疑成为了今年汽车行业的最大热点。其中不少车企在2025年CES上展示了其新一代AI座舱,为下一代智能汽车的人机交互、场景创新率先
根据中国台湾气象署所发布的报告显示,中国台湾南部地区于1月21日上午零点17分27秒发生里氏地震规模6.4的地震,震中位于北纬23.23度,东经120.57度,即在嘉义县政府东南方37.9公里,位于嘉