本文讨论电气工程的基本原理,并试图梳理出一些新的见解。对许多人来说,这会是早已知道(或曾经知道)的概念所作的一个更新,但笔者会尝试在论述中添加一些新东西。

本文讨论电气工程的基本原理,并试图梳理出一些新的见解。对许多人来说,这会是早已知道(或曾经知道)的概念所作的一个更新,但笔者会尝试在论述中添加一些新东西。

雅可比定律(Jacobi's Law)

大多数工程师都熟悉最大功率传输定理(也称为雅可比定律)。图1显示了一个电阻源和阻性负载,其目的是将功率从电阻源传输到负载。这个原理可以如此阐述:“当电阻源的内阻等于负载的电阻,所传递的功率最大,外部电阻可以改变,但内部电阻是恒定的。”(图1)。

图1 电路图显示连接到阻性负载的电阻源。

当RL = RS时,传输到负载的功率最大。一个经常被忽视的约束是假设源电阻(RS)是固定的,不受控制,否则,会选择RS = 0作为从电阻源获得最大传输功率的最佳值。

图2显示传输给负载的功率如何随RL / RS变化。传输到RL的功率取决于通过负载的电流和负载两端的电压。RL值变大会增加电压(VL),但使电流(IL)减少,类似地,RL值变小会增加负载电流,但会降低负载电压。运用一点微积分知识可以看出,最大功率发生在RL = RS时。

xiangweichuanshu2.jpg

图2 PL与RL / RS的关系曲线显示,当RL / RS = 1时负载的功率最大。

复阻抗

现在考虑阻抗是复数的AC情况,如图3所示。源阻抗为ZS = RS + jXS,负载阻抗为ZL = RL + jXL,当ZL是ZS的复共轭时,产生最大功率传输。也就是说,RL = RS和XL = -XS,这有时被称为复共轭匹配,正如预想的那样,如果XS = 0,又退回到阻性的情况。

xiangweichuanshu3.jpg

图3 电路图显示相连的负载和电源都有复阻抗。

都与相位有关

有趣的是,当XL = -XS时,电压源VS可看做纯电阻(RS + RL),这显示电压源输出的电流与电压同相。这并非巧合,电压和电流波形之间的相位在负载的平均功率中起着重要作用。来看看复阻抗的瞬时电压、电流和功率的时域表示。
瞬时功率由公式(1)给出:

p(t) = v(t)i(t) (1)

假设v(t)和i(t)都是正弦曲线:

xiangweichuanshu4.jpg

其中Φ是电压和电流波形之间的相位差。

图4显示了在Φ=45°时的时域波形v(t)、i(t)和p(t)。

xiangweichuanshu5.jpg

图4 Φ=45时的v(t)、i(t)和p(t)波形图。

应用三角函数恒等式:

xiangweichuanshu6.jpg

p(t)表达式由常数项(1/2VSILcosΦ)和两倍于原始频率的余弦函数组成。我们通常只对波形中的平均功率感兴趣,这可以透过在波形的一个周期上对p(t)求积分得到。双频余弦将平均为零,仅留下常数项,因此平均功率为:

PAVERAGE = 1/2VSILcosΦ。

图4中的p(t)曲线说明,瞬时功率以正弦方式变化,甚至在部分周期内变为负值。只要Φ不等于零,都有可能发生这种情况。从图中还可以看到,p(t)的平均值为正,这表示功率被传输到了负载。

电力工程师会使用真实功率和视在功率(Apparent Power)的概念来量化相位对功率的影响。真实功率代表实际传输的功率,包括v和i之间的相位影响,以瓦特(W)为单位测量。视在功率是一个更简化的概念,只是原始电流乘以电压,以伏安(VA)为单位测量,以区别于真实功率。

电力工程师也使用功率因子(PF)的概念:

xiangweichuanshu7.jpg

对于正弦波形,功率因素等于电压和电流波形间相角的余弦:

PF = cosφ

功率因子是量化有多少视在功率转换为有用(真实)功率的简单直觉方式。如果Φ=0,则PTRUE = PAPPARENT,PF=1;当Φ=±90°时,PTRUE下降到零,PF=0。图4所示的例子是Φ=45°,功率因素=0.707,说明PTRUE等于PAPPARENT的70%。

总结

本文回顾了最大功率传输的基础知识和相位关系的重要性,并将其与功率因子、真实和视在功率等电力工程概念结合。笔者故意忽略了对传输线的讨论,但这些功率传输概念与通常的传输线概念(例如驻波比、回波损耗和反射系数)有很多共同之处。

  • 没图啊
阅读全文,请先
您可能感兴趣
根据一些自称为海信员工的人士透露,海信正面临“大裁员”,员工数量从十一万人减少至八万人,裁员比例可能达到20%-30%……
在职场选择的十字路口,许多人面临着薪酬与稳定性之间的权衡。例如,去大厂还是国企……
此次仲裁的核心争议在于,杨植麟和张宇韬在未取得循环智能投资方的同意豁免书之前,便启动了融资并创立了月之暗面。2024年3月,月之暗面旗下AI应用产品Kimi大火,甚至出现二级市场Kimi概念股。
通报一出,消失几个月的姜萍再次被裹进舆论漩涡。有人谩骂,说她品行不端,玷污了数学的神圣;有人讽刺,说她浪得虚名,还妄想站在科学顶端;更有人搬着凳子坐等吃瓜,想看看事态会朝着哪个方向发展。
A某现年50多岁,居住在安徽省合肥市,被逮捕前在一家中国芯片公司工作,与妻子和两个女儿共同生活。去年12月,合肥市国家安全局的调查人员将A某从家中带走,并在当地酒店隔离调查了5个多月……
诺基亚公司(Nokia)宣布在中国裁员近2000人,占大中华区员工总数的五分之一。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
来源:观察者网12月18日消息,自12月2日美国发布新一轮对华芯片出口禁令以来,不断有知情人士向外媒透露拜登政府在卸任前将采取的下一步动作。美国《纽约时报》12月16日报道称,根据知情人士以及该报查阅
来源:IT之家12 月 18 日消息,LG Display 韩国当地时间今日宣布,已将自行开发的“AI 生产系统”投入到 OLED 生产线的日常运行之中,该系统可提升 LG Display 的 OLE
有博主基于曝光的信息绘制了iPhone 17系列渲染图,对比iPhone 16系列,17系列最大变化是采用横置相机模组,背部DECO为条形跑道设计,神似谷歌Pixel 9系列,这是iPhone六年来的
对于华为来说,今年的重磅机型都已经发完了,而明年的机型已经在研发中,Pura 80就是期待很高的一款。有博主爆料称,华为Pura 80将会用上了豪威OV50K传感器,同时电池容量达到5600毫安时。至
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
又一地,新型储能机会来了?■ 印度:2032储能增长12倍,超60GW据印度国家银行SBI报告,印度准备大幅提升能源存储容量,预计到2032财年将增长12 倍,超60GW左右。这也将超过可再生能源本身
LG Display  12月18日表示,为加强OLED制造竞争力,自主开发并引进了“AI(人工智能)生产体系”。“AI生产体系”是AI实时收集并分析OLED工艺制造数据的系统。LG Display表
 “ AWS 的收入增长应该会继续加速。 ”作者 | RichardSaintvilus编译 | 华尔街大事件亚马逊公司( NASDAQ:AMZN ) 在当前水平上还有 38% 的上涨空间。这主要得益