您是否使用过哪一种看起来方便且可接受的“解决方案”,实际采用后却发生与预期相反的效果?有时候,出于善意提供的解决方案也可能适得其反,尤其是在未经仔细考虑后果的情况下采用…

多年前,我曾经参与了一项开发项目,其中使用的直流(DC)主电源是一个标准的开放式机架单元,它需要以大约20A电流为机箱的相对较远部份提供5V电压。由于作为部份供电路径的PC电路板中IR压降引起的问题(电源轨太薄,使用1oz铜取代2oz),负载电压仅为4.5V左右,而规格适用于5V±200mV。因此,该设计的性能不稳定且不一致,尤其是在启动时。

该怎么办呢?在快速地开会讨论后,我们查看了可能的选择。从工程设计的角度来看,第一种方案是最简单的:直接增加额定的电源输出(供电已稍微减少了)以补偿预期的压降。虽然这看起来像是一种简单的解决方案,但生产人员可不喜欢在组装在线逐一手动调整每个单元的想法;修理人员也不想到了现场替换电源时还得重复做同样的事情(而且这是在现实中易于忽略的一步)。因此,从工程角度来看,这项看起来简单的解决方法有充份的理由必须被驳回。

然后马上有人提出了另一个想法:为什么不使用内建于电源中的遥测(remote-sensing)功能?电源的遥测设置包括两个电源导线和两个来自电源的感测导线,这些导线都连接至电源负载。使用这种方案时,电源是在负载上(而非输出端)感测实际电压,并调整负载本身以保持负载所需电压,而无论过程中发生任何IR压降。这正是开尔文(Kelvin)感测的变化版本,特别是用于需要准确评估电阻器上的电流以及其他测试和量测场合。

这做起似乎很简单,而且唯一的“代价”是负载和电源之间两条相对较细的走线(与实际电源线不同的是,它们携带的电流可忽略不计)。这样的方案在制造上是可行的,现场维修也没问题。我们高度乐观地认为马上就能解决这个问题,接着继续进行设计。

但是,事情可没这么简单就结束。没错,负载上的DC电压似乎没什么问题,但DC电源轨却也发生了许多噪声,甚至经常出现振荡。我们才刚刚采纳这项最佳想法,但看起来似乎没那么好。我们的下一步是“咨询”另一项项目团队的专业电力子系统/模拟工程师。

现实的经验教训

这就是从现实世界的经验中获得教训的最佳写照。他甚至不必实际看到电路、系统或示波器,就告诉我们问题可能出在感测线路中的噪声拾取。然后他绘制了一张简单的草图,显示电源实际上只是一个特定的闭路负反馈放大器,专用于以固定电压值提供可变电流,类似图1。匹配输出与参考的电源反馈回路通常实体上都很小,而且完全位于电源内部,因此相对较不受噪声拾取的影响。

power19020202.jpg
电源是具有闭路负反馈的专用放大器;其反馈回路的路径和特性会对功率放大器的性能造成不利影响(来源:Venable Instruments)

但是当你使用遥测功能时,可以将回路延伸至更宽广的环境中,不仅能拾取噪声(以回路而言,它算是不错的“天线”),还可以为路径增加更多阻抗。现在,它处于一个稍微稳定的状态。因此,遥测功能应该能最大限度地减少IR压降效应,但也会引发各种问题。

因此,现在问题改变了:如何处理这种噪声和振荡?显而易见的解决方案是在遥测导线上增加滤波功能,以衰减噪声拾取,并可能切换到隔离线。但是,至于什么才会起作用,一切都非常微妙,而且还完全取决于噪声而实现。此外,在遥测回路添加滤波功能,也会对回路动态产生其他效应。

最后,我们做了一开始就应该做的事情:尽量减少IR压降。我们增加了一些PC电路板的支座型母线(幸好边缘附近还有空间),并且在电源和系统的更远部份之间添加了一些电线,而非完全依靠PCB走线作为实体DC轨。当DC轨稳定后,IR压降大幅下降,而且一切都很顺利。

但我们清楚地学到的经验教训是:出于善意提供的功能(此处是指电源供货商的遥测功能)在某些情况下也会适得其反,特别是未经仔细考虑后果的情况下采用。这实际上是我们学到的第二课。第一课是进行一些基本的IR压降计算(这些计算并不难),然后在系统规划中添加一些余量。如果IR压降使您的设计处于“灰色区域”或更糟,请使用更宽的PC电路板走线、更厚的铜线、电线分线盘、独立导线——无论如何都必须要有干净稳定的DC额定电压,同时考虑到电源本身的输出容限。

毕竟,稳定的电源轨是提供一致、可靠性能的基础,只要有任何一丁点“怪异”出现都可能导致各种诡异、间断且难以除错的电路行为。一旦出现了“随机”的工程问题,就算可以依靠方便的功能(例如遥测)来解决问题,也可能让事情变得更糟糕。

您是否使用过哪一种看起来方便且可接受的“解决方案”,实际采用后却发生与预期相反的效果?

编译:Susan Hong

(参考原文:When a Good Power Solution Has the Opposite Effect,by Bill Schweber)

 

您可能感兴趣
太倒霉了,把儿童手表的充电线,接到了骨传导耳机上,当下耳机就被烧了!是手表充电线电流过大导致的损坏?还是正负极反接造成的?
安森美半导体此次裁员决策并非毫无预兆,主要原因是市场需求的下降和公司收入的减少。
碳化硅技术正在彻底改变电力电子行业,使各种应用实现更高的效率、更紧凑的设计和更好的热性能。ST、安森美、Wolfspeed、罗姆和英飞凌等领先制造商均提供SiC解决方案,可根据特定用例提供分立器件、功率模块或裸片形式的产品。
从运算放大器、逻辑功能芯片到高端处理器等基本抗辐射器件已经存在多年,并提供多种辐射耐受等级。尽管抗辐射是必要条件之一,仅靠器件本身并不足以保证整个电路的抗辐射性能。
仿真程序有助于分析和设计电源转换器及其控制算法。
此次收购符合南芯科技的长期战略规划,通过整合昇生微在嵌入式芯片设计上的技术专长和研发团队,南芯科技将强化其在硬件、IP、算法及软件等方面的技术优势……
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
作为功率半导体领域的创新领导者,Power Integrations(以下简称:PI)始终专注于前沿技术研发,持续为全球客户提供突破性解决方案。PI 在功率变换架构、电力电子驱动系统及汽车电子领域构建
Mar. 5, 2025 产业洞察根据TrendForce集邦咨询最新研究,TSMC(台积电)近日宣布提高在美国的先进半导体制造投资,总金额达1650亿美元,若新增的三座厂区扩产进度顺利,预计最快20
2月17日,“南京江宁开发区”发文透露,阳光电源在南京新建的光伏储能项目已经全面开工建设,总投资达到10亿元。加入光储充交流群,请加微信:hangjiashuo888据报道,阳光电源南京研发中心项目是
新思科技与国际半导体产业协会基金会(SEMI 基金会)近日在新思科技总部宣布签署一份谅解备忘录(MoU),携手推动半导体芯片设计领域的人才发展。据预测,到 2030 年,全球半导体行业将需要新增 10
在数字化飞速发展的当下,海量数据不断涌现。传统云计算模式下,数据传输到远程云端处理,产生延迟、带宽压力,难以满足实时性和隐私需求。为应对挑战,边缘计算应运而生,将部分计算任务下沉到网络边缘,降低延迟、
点击蓝字 关注我们SUBSCRIBE to USImage: SwitchBotSwitchBot价格实惠、可调节的智能窗帘终于问世了。SwitchBot窗帘(SwitchBot Roller Sha
新品EVAL-2ED3146MC12L–带辅助电源的6.5A双通道隔离栅极驱动器评估板EVAL-2ED3146MC12L评估板用于评估功率半桥电路中的2ED3146MC12L 6.5A隔离栅极驱动器I
                                                                                                
文|金融街老李奇瑞终于正式向港交所递交上市申请了。其实,支持奇瑞汽车实现IPO,此前就已经被安徽省列在了汽车产业2025年重点工作的第38条,但正如奇瑞汽车一贯的低调作风,此次赴香港上市,奇瑞在资本市
为进一步推进商业信用体系建设,促进企业诚实守信经营,面向企业普及诚信与品牌建设的意义,指导企业加强诚信品牌建设,提升其整体竞争力,“崛起的民族品牌”专题系列节目以诚信为内涵,在全国范围内遴选出有行业代