LLC拓扑广泛应用于各种功率转换设备中,然而LLC拓扑在轻载及空载情况下,即使工作频率范围很宽,往往仍然出现输出电压超出规格要求的现象,本文从理论上对引起该问题的原因进行了深入分析...

 1. 引言


近年来LLC 拓扑广泛应用于照明驱动,电视电源,工业电源,服务器/PC电源,通信电源等消费及工业领域中的DC-DC级,这是因其具有如全负载范围原边开关管的零电压开通(ZVS),副边二极管或同步整流开关零电流关断(ZCS),EMI特性好(高频噪声分量较少),电路结构简单,成本较低等优异特性。典型的半桥全波整流LLC拓扑如下图所示。
 2019-0108LLC.png
2019-0108LLC.png
图1:半桥LLC拓扑
 

对于LLC拓扑,根据目前最为常用的基波近似法(First Harmonic Approximation, FHA,Fundamental Element Simplification, FES)[1]计算得到的直流增益曲线,即使负载很轻甚至负载为零,只要工作频率足够高那么输出电压一定是可控的,即可以稳定在规格要求范围内。然而,在大量采用该拓扑的产品中都可以发现:在轻载下输出电压无法稳定在规格要求范围内即往往高于规格的要求,即使LLC已经工作于非常非常高的频率。这与目前的理论分析是不相符的。因此有必要在轻载及空载条件下对直流增益曲线进行重新分析与计算,从中找到影响直流增益的因素,从而找到解决问题的方案。

 2. 变压器原边等效并联寄生电容对直流增益曲线的影响


采用FHA/FES方法计算LLC的直流增益曲线时,LLC变压器的模型中的漏感实际上已经被考虑进去:对于谐振电感为独立电感的应用,因为漏感与谐振电感为串联关系(副边漏感等效折算到原边),因此谐振腔的谐振电感量为设计的谐振电感与漏感叠加值。而对于谐振电感与变压器集成方案,变压器漏感即谐振电感。但是原边绕组间,副边绕组间的分布电容及副边整流二极管或同步整流MOSFET的输出电容并未考虑到计算中。当考虑这些寄生电容后,变压器的模型及LLC等效电路分别如图2和3所示[3]。
 2019-0108LLC2.png
图2 考虑副边寄生电容后的变压器模型
 2019-0108LLC3.png
图3 考虑副边寄生电容后的LLC等效电路模型


根据图2所示结构,图3中的变压器原边等效并联寄生电容Cp为:
Cp=Cpw+(2(Csw+Csoss))/〖Nps〗^2                        (1)
Cpw,Csw,Csoss分别为变压器原边绕组分布电容,变压器副边绕组分布电容及输出整流二极管或同步整流管的等效输出电容,Nps为变压器原副边的匝比,
根据图3所示等效电路,计算得到的LLC直流增益为:
G=(〖(f/fr )〗^2 (m-1))/√(〖Qe〗^2 〖(〖(f/fr )〗^2-1)〗^2 〖(m-1)〗^2 〖(f/fr )〗^2+m^2 〖(〖(f/fr )〗^2-1/m-((m-1)/m)〖(f/fr )〗^2 〖(f/fz )〗^2)〗^2 )
(2)
其中:
m=Lp/Lr                                          (3)
f_r=1/(2π√(Lr Cr ))                                   (4)
f_z=1/(2π√(Lr Cp ))                                   (5)
Q_e=√(Lr/Cr )*1/Rac                                   (6)
R_ac=8/π^2 *〖Nps〗^2*Vout/Iout                           (7)
以一个LLC谐振变换器设计参数为例:Lp=1400uH; Lr=165uH; Cr=68nF,Nps=16.7,对于图4所示的LLC变换器,使用阻抗分析仪在板测试变压器原边等效电容(图中所示的蓝色圆点为测试端),根据测试得到的阻抗曲线计算得到原边等效电容Cp为:
Cp=269pF                                    (8)
 2019-0108LLC4.png
图4 采用LLC拓扑的开关电源变压器原边等效并联电容测试端
 

根据公式(2)可以计算得到不同品质因数Q值(对应100%负载~1%负载)下的增益曲线族,如图5所示;
 2019-0108LLC5.png
图5 考虑变压器寄生电容后的直流增益曲线


而相同条件下不考虑寄生电容的增益曲线族如图6所示。
 2019-0108LLC6.png
图6 不考虑变压器寄生电容的直流增益曲线


从图5和图6的对比可以得到,由于变压器原边绕组等效寄生电容的存在,增益曲线在高频出现另一个电感电容并联谐振点,导致增益曲线在轻载情况下随频率升高而增益变高,且负载越轻,该现象越明显。这将导致轻载情况下输出电压无法稳定。相同负载(以10%负载为例)不同原边寄生电容(500pF~50pF)下的增益曲线如图7所示。从图中可知,寄生电容越大,谐振点越低,对LLC增益曲线的影响越大,只有在寄生电容小于50pF情况下,其对增益曲线的影响可以忽略不计。
 2019-0108LLC7.png
图7 不同寄生电容下的直流增益曲线

随着工作频率的进一步升高,变压器中更多的寄生电容和寄生电感对LLC的工作模式产生影响,使得LLC拓扑变为多元件谐振拓扑,增益曲线将出现多个谐振点,LLC特性将变的更加复杂。

3.  原边MOSFET等效输出电容对直流增益曲线的影响


对于LLC拓扑,原边MOSFET在进行开关切换(即一个开关管关断,死区时间后另一个开关管开通)过程中,激磁电感会与原边MOSFET的输出电容产生谐振,该谐振能量将部分传递到副边,使得在空载及轻载情况下输出电压升高,LLC拓扑原边MOSFET的输出电容对直流增益曲线的影响,不同MOSFET输出电容对直流增益的影响如图8所示[7]:
 2019-0108LLC8.png
图8 不同原边MOSFET输出电容对轻载直流增益曲线的影响


当MOSFET的输出电容较小时,轻载下直流增益曲线出现上翘现象,使得输出电压无法保持在规格要求范围内。
 

4.  保持输出电压稳定的措施


根据本文第2部分的分析,由于变压器等效原边电容的存在和原边MOSFET输出电容较小,LLC的增益曲线在高频段出现随工作频率上升的现象,导致轻载情况下输出电压无法保持在规格范围内。这是多数开关电源无法接受的。接下来的部分将介绍一些措施来解决该问题:

4.1减小变压器等效并联电容


这是最直接解决问题的方案,然而却也是最难实施的方案。由于无论如何变压器的寄生电容都是存在的,因此可以采取的措施是尽量减小该电容,文献[3]给出了其称之为“分离式绕法”的变压器绕制建议,其寄生电容只有传统并绕方法的十分之一。文献[4]提出了“累进式”绕制方法,寄生电容非常小。但往往这些绕制方式会带来绕制的复杂性提高,从而使得变压器的价格上升。

4.2 LLC工作于打嗝模式

在轻载情况下LLC拓扑进入打嗝(burst)模式是较多采用的一种控制策略,该策略一方面可以保持输出电压在规格范围内,另一方面减小了轻载下的输入功率,提高了轻载下的效率。图9为典型的打嗝模式下的关键波形[5]。然而打嗝模式会带来输出电压纹波变大,这在一些应用,例如服务器电源,PC电源等是无法接受的。
 2019-0108LLC9.png
图9 打嗝模式下的LLC关键波形示意图

4.3谐振电感并联电容

对于谐振电感为独立电感的应用中,文献[6]提出了一种多谐振LLC的方案,即在谐振电感上并联一个电容,如图10所示,从而生成一个新的LLC谐振点f02,且
 2019-0108LLC10.png
图10 多谐振LLC拓扑
f02=1/2π  1/√(Lp Cp )                                 (9)
原有谐振频率也稍有变化,其值为:
f01=1/2π  1/√(Lr (Cp+Cr))                           (10)
新的增益曲线如图11所示:
 2019-0108LLC11.png
图11 多谐振LLC变换器直流增益曲线


由于增益曲线在fw=f02时为零,因此理论上该多谐振LLC拓扑在任何负载下输出电压都可以低至零。设计中需要选择合适的Cp,确保LLC的最高工作频率不超过f02。

4.4 原边MOSFET并联电容


根据第3部分的分析,原边MOSFET的输出电容越大,相同工作频率下直流增益曲线越低,即输出电压越容易控制在规格范围内。因此在选定原边MOSFET的前提下,还可以通过并联电容来增大等效输出电容,从而控制输出电压。此方法简单易行,可是缺点也较明显:输出电容的增大带来MOSFET开关损耗的增加,从而降低了转化效率,特别是在轻载下,效率的降低比较明显。

4.5 增加变压器原副边匝比

根据图6~图8,无论是变压器原边等效并联寄生电容还是原边MOSFET输出电容对直流增益曲线的影响,都是发生在工作频率高于谐振频率的情况下。因此通过增加变压器的原副边匝比(多数是通过增加变压器原边绕组的匝数),令LLC拓扑在轻载情况下工作于谐振点附近,则寄生参数对输出电压的影响可以忽略,从而轻载下输出电压更容易稳定在规格范围内。当然此设计需要考虑满载及过流保护前等情况下的直流增益的峰值足够高,保证这些情况下输出电压的稳定。

4.6 减小副边二极管/同步整流管寄生电容


根据第2部分的分析,变压器原边等效并联电容有一部分为副边二极管或同步整流管的等效输出电容,因此选择较小输出电容的二极管或者MOSFET将有助于稳定输出电压。在输出二极管或同步整流管上并联一个MOSFET与二极管串联的电路,该电路将部分能量反馈到原边侧,从而在轻载及空载下维持了输出电压的稳定。

4.7 轻载下关闭同步整流管

对于副边为同步整流(MOSFET为副边侧开关管)的设计,在轻载情况下将同步整流的驱动关闭将有助于保持输出电压的稳定,当同步整流的驱动关闭后,副边侧通过MOSFET的体二极管续流,体二极管的压降介于0.7V~1.2V,远高于同步整流开通时的压降(V=I_D*R_(DS(on))),因此相同输出电压下所需要的副边绕组的输出电压更高。当然关闭同步整流的驱动也会有额外的问题,在负载突然加重需要将同步整流驱动打开时,由于上述压差的存在会导致输出电压出现过冲现象,因此设计中需要综合考虑该措施的可实施性。

 5.  总结


本文对LLC拓扑在轻载及空载情况下输出电压超出规格要求的现象进行了理论分析,证明变压器原边等效并联电容和原边MOSFET输出电容的存在产生出了该问题。相应地, 本文提出了多种可行的解决方案,来实现输出电压的稳定。本文将对电源开发工程师解决LLC拓扑轻载下的输出电压偏高问题提供有益的参考。
 

阅读全文,请先
您可能感兴趣
碳化硅(SiC)衬底已在电动汽车和一些工业应用中确立了自己的地位。然而,近来氮化镓(GaN)已成为许多重叠应用的有力选择。了解这两种衬底在大功率电路中的主要区别及其各自的制造考虑因素,或许能为这两种流行的复合半导体的未来带来启示。
对于大多数片上系统(SoC)设计而言,最关键的任务不是RTL编码,甚至不是创建芯片架构。如今,SoC主要是通过组装来自多个供应商的各种硅片知识产权(IP)模块来设计的。这使得管理硅片IP成为设计过程中的主要任务。
英特尔的嵌入式多裸片互连桥(EMIB)技术,旨在解决异构集成多芯片和多芯片(多芯粒)架构日益增长的复杂性,在今年的设计自动化大会(DAC)上掀起了波澜。它提供了先进的IC封装解决方案,包括规划、原型设计和签核,涵盖了2.5D和3D IC等广泛的集成技术。
一项技术要想产生广泛的影响,它不仅要解决短期的挑战,还应该超越现有技术的进步,为未来的创新打开大门。这就是我们对泛林集团(Lam Research)今年早些时候推出的全球首个用于半导体量产的脉冲激光沉积(PLD)技术的描述。
能量采集是低功耗电子设备供电技术发展的基本支柱,为实现对环境影响最小的可持续技术的未来铺平了道路。
许多人都听说过缓存一致性这个术语,但并不完全了解片上系统(SoC)器件,尤其是使用片上网络(NoC)的器件中的注意事项。要了解当前的问题,首先必须了解缓存在内存层次结构中的作用。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
点击蓝字 关注我们德州仪器全球团队坚持克服挑战,为电源模块开发新的 MagPack™ 封装技术,这是一项将帮助推动电源设计未来的突破性技术。  ■ ■ ■作为一名经验丰富的马拉松运动员,Kenji K
在全球智能手机竞争日益激烈的情况下,谁能在高端市场站稳脚跟,谁就占据了主动权。一直以来全球智能手机市场格局都是,苹果专吃高端,其他各大厂商分食全球中低端市场。但现在市场正在其变化。根据Canalys最
文|沪上阿YI路特斯如今处在一个什么样的地位?吉利控股集团高级副总裁、路特斯集团首席执行官冯擎峰一直有着清晰的认知:“这个品牌的挑战依然非常大。首先,整个中国市场豪华汽车整体数据下滑了30%~40%,
天眼查信息显示,天津三星电子有限公司经营状态9月6日由存续变更为注销,注销原因是经营期限届满。该公司成立于1993年4月,法定代表人为YUN JONGCHUL(尹钟撤),注册资本约1.93亿美元,
在德国柏林举行的IFA 2024上,AMD计算和图形业务集团高级副总裁兼总经理Jack Huynh宣布,公司将把以消费者为中心的RDNA和以数据中心为中心CDNA架构统一为UDNA架构,这将为公司更有
8月28-30日,PCIM Asia 2024展在深圳举行。“行家说”进行了为期2天的探馆,合计报道了200+碳化硅相关参展企业(.点这里.)。其中,“行家说”还重点采访了长飞先进等众多企业,深入了解
9月6日,“智进AI•网易数智创新企业大会”在秦皇岛正式举行,300+企业高管及代表、数字化技术专家齐聚一堂,探讨当AI从技术探索迈入实际应用,如何成为推动组织无限进化的新引擎。爱分析创始人兼CEO金
往期精选2023年度中国移动机器人产业发展研究报告发布!超200个——2024年上半年AGV/AMR行业中标项目盘点市场保有量超10000台的8大中国AGV/AMR厂商总额超190亿-盘点全球移动机器
近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆