NOR闪存被广泛部署为FPGA的配置器件。工业、通信和汽车ADAS应用中使用的FPGA性能取决于NOR Flash的低延迟和高数据吞吐量特性。快速启动时间要求的一个典型例子是汽车环境下的摄像系统。汽车一发动,后视图像就要马上显示在仪表盘显示屏上,这是一个首要的设计挑战。本文将会介绍采用高速NOR闪存时,如何对FPGA进行配置。

 NOR闪存被广泛部署为FPGA的配置器件。工业、通信和汽车ADAS应用中使用的FPGA性能取决于NOR Flash的低延迟和高数据吞吐量特性。快速启动时间要求的一个典型例子是汽车环境下的摄像系统。汽车一发动,后视图像就要马上显示在仪表盘显示屏上,这是一个首要的设计挑战。

上电后,FPGA立即加载存储在NOR器件中的配置位流数据。传输完成后,FPGA转换到活动(已配置好)状态。FPGA包括许多配置接口选项,通常包括并行NOR总线和串行外设接口(SPI)总线。支持这些总线的存储器在不同制造商的产品之

最新发布的JEDEC xSPI规范是由所有主要的NOR闪存制造商联合开发的。新标准结束了数十年NOR闪存制造商独立开发产品而没有通用规范的局面。虽然存在细微差别,但核心JEDEC xSPI功能在所有制造商的存储器产品中都是一样的。JEDEC xSPI规范标准化了总线事务、命令和大量内部功能。结合高吞吐量性能,这些新一代闪存可实现全新的应用和功能。例如,赛普拉斯的Semper NOR Flash系列不但符合JEDEC xSPI规范,而且可提供持续的400MB/s读取传输速率,非常适合作为FPGA的配置存储器。为了直观说明这一点,400MB/s的数据速率能够在320ms内传输128MB(1Gb)的内容。

FPGA配置的历史

当FPGA首次出现时,可选的配置存储器要么是并行EPROM,要么是并行EEPROM产品。随着时间的推移,NOR闪存技术开始出现,并因其系统内可重编程性和成本优势而被广泛采用。第二个演化是SPI存储接口在大多数应用中取代了并行NOR接口。今天的SPI存储产品具有高密度、小封装尺寸、高读取吞吐量等优点,最重要也许是其高效的低引脚数接口。
20181207-nor-fpga-1.jpg
图1:千兆位四SPI(6引脚)和并行NOR(45引脚)接口(来源:赛普拉斯半导体)

图1示出了与千兆位并行NOR产品相对比的千兆位SPI器件的引脚排列。对于千兆位存储器,四串行外设接口(QSPI)器件带有一个6引脚接口,而并行NOR器件需要45个引脚。 引脚数量的极大减少让QSPI器件被广泛采用,成为首选的配置接口。QSPI接口可在不改变器件占用空间的情况下改变密度。

FPGA配置速度

随着工艺节点不断缩小,FPGA器件继续增加可用的可编程逻辑量。这就要求更高密度和更快速度的配置存储器。现代FPGA在配置期间需要加载多达128MB的数据。这些高密度配置比特流需要更长的时间才能从NOR闪存传输到FPGA。 配置接口不仅要针对读取吞吐量进行优化,还必须确保不同制造商的NOR闪存之间的互操作性。

SPI读取吞吐量

SPI读取吞吐量在过去几年中急剧提升,从最初运行在×1模式的SPI接口,一直到运行×4 DDR的现代QSPI存储器。从表1中可以看出,下一代闪存器件能够达到更高的SPI总线性能。
20181207-nor-fpga-3.jpg
表1:闪存器件的SPI读取吞吐量选项。(来源:赛普拉斯半导体)

现代SPI器件能够被永久配置为固定总线宽度和传输类型,可在上电时立即运行。FPGA必须支持这一永久配置特性,以便在上电后立即开始配置过程。

或者,SPI存储器可以在×1模式下退出上电,允许主系统(FPGA)查询存储器中的串行闪存可发现参数(SFDP)表中的特性。这种×1模式已成为多个存储器供应商支持的标准功能,而且可以让FPGA检索有关器件功能的关键信息。 一旦检索到器件特性,就可以快速重新配置FPGA存储控制器和SPI存储器件,以获得最大的读取性能。
20181207-nor-fpga-5.jpg
图2:串行闪存可发现参数(SFDP)表用于在上电时配置SPI总线功能。 (来源:赛普拉斯半导体)

下一代闪存器件可以工作于×1、×4或×8总线宽度,并支持SDR或DDR传输类型,在使用中利用集成的SFDP表检索关键器件信息至关重要。选择哪种总线宽度和传输类型必须与FPGA上实施的总线接口配置保持一致。

双QSPI配置接口

为了缩短FPGA配置时间,许多现代FPGA允许将配置位流划分到两个QSPI器件(图3)。 这两个QSPI器件以并行方式连接,其中位流的低半字节存储在“主”QSPI器件(QSPI_P)中,而位流的高半字节存储在“辅助”QSPI器件(QSPI_S)中。这两个器件在加载位流时并行运行,从而有效地使读取数据传输速率加倍。

请注意,除了共享的SCK线之外,接口基本上是独立于这两个器件的。实施共享SCK线的目的是在并行(即,同时)方式下读取器件时最小化时序偏差。 当使用相同的目标地址执行相同的操作时,可以一次一个地对器件访问,或者同时对两个器件进行访问。

20181207-nor-fpga-7.jpg
图3 :双QSPI配置接口(11个引脚)允许配置位流在两个QSPI器件之间进行划分,从而有效地将读取数据传输速率提高一倍。 (来源:赛普拉斯半导体)

当大型FPGA器件需要以最快的方式传输大配置(即高密度)位流时,这种11引脚的双QSPI配置很有吸引力。

闪存配置

下一代闪存可以×1(主要用于SFDP访问)、×4或×8 IO总线宽度运行。数据可以SDR或DDR格式传输,并且使用新的数据选通信号以有助于高速传输。 例如,赛普拉斯的Semper NOR闪存器件的八进制配置使用11引脚接口(见图4)。
20181207-nor-fpga-9.jpg
图4:使用低引脚数接口,可以SDR或DDR格式,按照×1、×4或×8 IO总线宽度来传输数据。 这里显示的是采用11引脚接口的赛普拉斯Semper NOR闪存的八进制配置。 (来源:赛普拉斯半导体)

必须将新的Data Strobe合并到FPGA配置接口中,以充分利用下一代Flash器件的高吞吐量读取性能。数据选通与输出读取数据边缘对齐,其方式与低功耗DDR DRAM器件使用的选通方式相同(见图5)。Data Strobe可以“绘制”数据眼图,并让FPGA以高时钟速率有效地捕获数据。
20181207-nor-fpga-11.jpg
图5:具有数据选通功能的×8 DDR读取事务与输出读取数据边缘对齐,使FPGA能够以高时钟速率有效捕获数据。 (来源:赛普拉斯半导体)

一个非常适合FPGA配置的闪存功能是可支持连续读取操作。连续读取开始于主机(MCU或FPGA)启动CS#,然后发出读取命令,后面带着目标地址。经过多次延迟周期,存储器从目标地址输出数据。如果主机继续切换时钟,那么存储器将通过从下一个顺序地址输出数据做出响应。只要时钟继续切换,存储器将继续从顺序地址输出数据。 这种顺序读取功能可以通过单个读取事务对FPGA进行配置。

另一个有助于FPGA配置的功能是AutoBoot。AutoBoot在上电复位期间从预先配置的目标地址执行自动读取操作,然后在第一次启动CS#时立即输出数据(见图6)。这一功能对需要简单配置机制的ASIC器件也很有用。一旦CS#被置位,内存将返回到其待机状态,并以正常方式处理后续操作。
20181207-nor-fpga-13.jpg
图6 :Autoboot读取功能(具有3个预热周期)正在运行中。(来源:赛普拉斯半导体)

NOR Flash器件的写入事务(参见图7)与标准SPI操作几乎完全相同,但有两个例外。 首先,在整个事务期间必须将新的Data Strobe信号驱动为低电平。 其次,当配置为DDR操作时,数据被写为字(16b),而不是传统SPI产品上的字节编写粒度。
20181207-nor-fpga-15.jpg
图7:NOR Flash的写事务要求在整个事务期间将Data Strobe信号驱动为低电平,并且在配置为DDR操作时将数据写为16位字。(来源:赛普拉斯半导体)

下一代NOR闪存器件的高吞吐量性能可满足大规模FPGA应用的高密度和即时启动要求。所有主要的NOR闪存制造商都参与了JEDEC xSPI规范的开发,这为OEM厂商提供了更多的采购选择。JEDEC xSPI规范涵盖了上述八进制SPI接口,以及HyperBus接口,两者均提供400MB/s的读取吞吐量。已实现的读取吞吐量远远高于传统SPI产品。需要对FPGA SPI控制器进行修改以充分利用其高速配置。需要考虑的新功能包括DDR数据速率、用于数据捕获的新数据选通引脚,以及扩展的×8总线接口。此外,一些NOR闪存器件(例如赛普拉斯的Semper NOR系列)允许在实施双QSPI配置架构时去除其中一个QSPI器件。在需要快速FPGA配置时间,以及执行实时重新配置的FPGA应用中,下一代闪存提供的性能具有很大的吸引力。

本文同步刊登于《电子工程专辑》2018年12月刊杂志
________________________________________

关于作者:

本文作者Cliff Zitlaw从事半导体存储器的开发已有36年。Cliff的主要研究焦点是总线接口,可以在不同的应用约束条件下优化存储性能。Cliff是Xicor微处理器串行存储器接口(EEPROM)、Micron CellularRAM接口(PSRAM)和赛普拉斯Hyperbus接口(NOR和PSRAM)的发明人。Cliff是49项跟存储功能和用法相关的专利作者或合着者。闲暇时,Cliff喜欢吃BBQ、看电视,周六小睡一把。

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
您可能感兴趣
双方合作可能形成“三星主导制造、YMTC提供技术”的分工模式,加速行业技术迭代。未来,这一模式或推动更多跨国技术联盟,加速行业创新周期。
三星、SK海力士和美光等主要DRAM制造商逐步计划在2025年下半年终止DDR3和DDR4内存的生产。这一决策是由于对HBM(高带宽内存)和DDR5等最新内存技术的需求增加,以及DDR3和DDR4内存收益性的下降所驱动的......
与目前第8代的218层产品相比, 新一代3D闪存实现了33%的NAND接口速度提升,达到4.8Gb/s。
2.5D和3D集成研究旨在突破内存与处理单元间的数据传输瓶颈。为解决这一瓶颈,研究人员将内存堆栈放置得更靠近芯片,并在硅中介层上实现不同裸片和内存单元的异构集成。
在与《电子工程专辑》的独家对话中,华邦电子产品总监朱迪用“冰火两重天”来形容2024年存储行业留给自己的感受。他预测2025年端侧AI产品将进入爆发期,落地速度将比过去两年更快,会带动更多中小容量存储的需求。
英伟达在CES 2025上发布的Project DIGITS是SOCAMM的首个落地平台。英伟达CEO黄仁勋强调:“未来,每个创意工作者都需要一台个人AI超级计算机”, 旨在将数据中心级算力带入个人桌面环境。如果这一新标准得以实现,SOCAMM很有可能会被视为“第二代高带宽内存(HBM)”......
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
作为功率半导体领域的创新领导者,Power Integrations(以下简称:PI)始终专注于前沿技术研发,持续为全球客户提供突破性解决方案。PI 在功率变换架构、电力电子驱动系统及汽车电子领域构建
本文来源:物联网展行业变革:“位置即服务”正催生万亿级市场裂变数据洞察:2025年全球GNSS市场规模预计达680亿美元,年复合增长率28%,其中智能穿戴、资产追踪、工业安全三大场景贡献超50%。增量
引言 嘿,各位电动汽车的爱好者们!咱们今儿个就来聊聊电动汽车里那些“看不见,摸不着”,但又至关重要的零部件。要说电动汽车这玩意儿,那可真是科技含量满满,各种高精尖的技术都往里堆。但要让这些
国际电子商情讯,昨日(3月3日)晚间,TCL科技发布公告称,拟以115.62亿元收购深圳市华星光电半导体显示技术有限公司(以下简称深圳华星半导体)21.5311%股权。A股市场又一起百亿并购2025年
差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。差分电路的电路构型    上图是差分电路。    目标处理电压:是采集处理电压,比如在系统中像母线电压的采集处理,
在储能行业蓬勃发展的浪潮中,安富利凭借卓越的技术实力与广泛的市场影响力,荣获2025“北极星杯”储能影响力BMS/EMS供应商奖。这一荣誉不仅是对安富利过往成就的高度认可,更是对其在储能领域持续创新与
3月4日,中国商务部接连发布三则公告,对26家美国实体/企业采取不同的管制措施。商务部公告2025年第13号显示,根据《中华人民共和国出口管制法》和《中华人民共和国两用物项出口管制条例》等法律法规有关
                                                                                                
    内容概要:目前,全球半导体、光电等电子信息产业在世界范围内转移,东亚、东南亚等地区已成为世界电子信息行业的主要市场和发展重心;同时由于我国医药卫生、半导
为进一步推进商业信用体系建设,促进企业诚实守信经营,面向企业普及诚信与品牌建设的意义,指导企业加强诚信品牌建设,提升其整体竞争力,“崛起的民族品牌”专题系列节目以诚信为内涵,在全国范围内遴选出有行业代