电源适配器在小型化过程中正面临很多挑战,例如如何确保每个充电器在满载、半载、轻载以及待机时都能实现高能效?如何在元器件数量减少的情况下,同时兼顾更高功率密度、散热管理与低抗电磁干扰(EMI)?等等。

电源适配器在小型化过程中正面临很多挑战,例如如何确保每个充电器在满载、半载、轻载以及待机时都能实现高能效?如何在元器件数量减少的情况下,同时兼顾更高功率密度、散热管理与低抗电磁干扰(EMI)?等等。

为帮助用户解决这些问题,安森美推出了自适应有源钳位反激控制器NCP1568和700V半桥驱动器NCP51530,在拓扑结构、性能参数等方面进行了调整。其中,NCP1568 ACF控制器具备先进的功能和灵活的操作,同时使用了SJ FET或GaN FET,且只需少量外部器件就可实现高密度的设计。NCP51530驱动器则是一款高速、高性能、强固的电源方案,包括针对汽车应用的AEC Q-100认证选择。

20181109-onsemi-1.jpg
安森美USB PD电源适配器方案

安森美半导体模拟方案部交流-直流电源管理高级市场推广经理蒋家亮表示,在传统的反激拓扑架构中,开关包含一个变压器和一个Mosfet,开关时产生的振铃会产生高频EMI。如果不想产生EMI,就需要周边的振铃电路来吸收,吸收掉就等于损耗掉,跑高频越多损耗越多,这就是传统的反激拓扑结构不能跑到高频的主因。

而在使用有源钳位反激架构之后,在上面多加一个Mosfet和一个电容,在同样有吸收能量的地方,当Mosfet关断时,全部能量会存储在电容里,有需要时再重新利用。只要把Mosfet的开关电压设置为零伏,下边的Mosfet就是零伏的电压开关,等于没有损耗。当Mosfet关掉时,可以把EMI损耗的能量全部重新利用,传递到二极管,等于整个电源转换过程不会有损失,这样既可以做高频,也可以实现低EMI,同时还会保持高能效,这就是有源钳位反激架构的优势。

NCP1568关键特性要点着重体现在以下三方面:

控制模式(包括自适应零电压开关频率调制支持可变的Vout、集成自适应死区时间和峰值电流模式控制);非连续导通模式(DCM)及轻载模式(可选过渡至DCM模式;频率返走,最小31kHz的频率钳位;静音跳跃消除可闻噪声;待机功耗小于30Mw);高压(HV)启动(700V HV启动JFET、集成高压开关节点检测以优化ZVS,内置欠压和X2放电)。

在自适应零电压(ZVS)开关方面,由于USB Type-C和USB PD既面向5V手机,也面向20V笔记本市场,所以需要根据功率的不同对负载点开关进行优化,减少开关导通损耗。另一方面,自适应死区的时间也是确保每个周期开关保持最佳状态的方法。NCP1568会监测开关节点,当电压降至12V以下,则在30纳秒(ns)内切换至低边驱动器。如在约 400/600ns内未发生ZVS(OTP选项),则低边驱动强制导通。此外,由于IC需要将周期调到轻载、待机部分,以前反激架构很难做到非常低的待机,可能有声音,通过这一功能,就可以实现静音跳跃消除可闻噪声的效果。

20181109-onsemi-2.jpg

 

采用NCP1568 USB PD 65W超高密度演示板的电源适配器尺寸相当于iPhone8手机的1/3。演示板采用超结(SJ)FET,工作模式为有源钳位反激及DCM,满载能效在120V时可以达到94%,在230V时可以达到94.6%。

20181109-onsemi-3.jpg
NCP1568 USB PD 65W超高密度演示板能效

至于未来氮化镓功率管是不是也适用于有源钳位拓扑?蒋家亮表示,这取决于客户目标。目前氮化镓价格较贵,所以在高密度部分,如果能用普通超结Mosfet做到高密度,那就是首选方案。但他也同时强调说,如果拓扑结构无法适配高频,即便选用氮化镓也是浪费。目前来看,只有有源钳位或者LLC零电压切换的拓扑结构才可以适配高频,所以用户在选择时一定要理性。

下图是NCP51530性能对比图。作为目前全球跑得最快的半桥驱动器,NCP51530从信号到输出的延迟为7纳秒,爬升和下降时间短,驱动器温度保持在45度左右,与NCP1568配合使用,就能够做出高频高密度方案。

 20181107-onsemi-1.png

“安森美的IC方案非常有弹性,无论是60瓦、90瓦,甚至可能做27瓦。目前市场比较流行的12瓦标准的充电器,也可以做到27瓦,所以相对来说密度非常高。”蒋家亮说,目前有源钳位反激式拓扑结构还比较新,市场接受程度还不高,正是该拓扑结构推广的机遇。

qrcode_EETCwechat_120.jpg

关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
碳化硅(SiC)半导体产量的快速增长推动了工艺技术的重大进步。在化学机械平坦化(CMP)方面,降低应力等进步至关重要,因为应力会影响晶圆形状(尤其是弯曲和翘曲),从而对晶圆处理和加工带来重大挑战。
智能嵌入式视觉和机器学习等实时计算密集型应用对能效、硬件级安全性和高可靠性的需求日益增长。同时,不断扩大的航天市场对计算的需求也在不断增加。
LPDDR内存主要针对智能手机,因此专为低功耗和点对点连接而设计。但手机的快速发展也推动了LPDDR的快速发展,这就是为何LPDDR5X传输速率比商品DDR5 SDRAM更快。
在这篇文章中,我们将讨论Advantech(研华)如何帮助客户利用AOI生产PCB和IC。我们将重点介绍研华的由AMD驱动的AIMB-723工业级主板的新能力,它将开启基于AOI的视觉检测的新时代。
尽管有着积极的预测,人工智能半导体领域仍面临持续的挑战,特别是在性能和功效方面。因此需要进一步努力加强和完善设计,使基于人工智能的工作负载能够低功耗执行。
来到2024年,短短一个多月的时间,世界脑机接口行业就风起云涌,竞争趋于白热化。Neuralink的第一例实验已经开始,并获得了“令人鼓舞”的初步结果;然而,其最大的竞争对手Synchron也开始了动作,其推出的Stentrode曾被马斯克成为“遥遥领先”,当然,加州理工学院的功能超声也一直在追赶。国内清华大学也获得了重大突破:在四肢截瘫患者身上实现了自主脑控喝水。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
近期,多个储能电站项目上新。■ 乐山电力:募资2亿建200MWh储能电站12月17日晚,乐山电力(600644.SH)公告,以简易程序向特定对象发行A股股票申请已获上交所受理,募集资金总额为2亿元。发
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
“ 洞悉AI,未来触手可及。”整理 | 美股研究社在这个快速变化的时代,人工智能技术正以前所未有的速度发展,带来了广泛的机会。《AI日报》致力于挖掘和分析最新的AI概念股公司和市场趋势,为您提供深度的
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
近期,高科视像、新视通、江苏善行智能科技等企业持续扩充COB产能。插播:加入LED显示行业群,请加VX:hangjia188■ 高科视像:MLED新型显示面板生产项目(二期)招标12月18日,山西高科
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
在科技浪潮翻涌的硅谷,马克·扎克伯格不仅是“脸书”帝国的掌舵人,更是以其谦逊低调的形象,在公众心中树立了独特的领袖风范。然而,在镁光灯难以触及的私人领域,扎克伯格与39岁华裔妻子普莉希拉·陈的爱情故事
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播