电源适配器在小型化过程中正面临很多挑战,例如如何确保每个充电器在满载、半载、轻载以及待机时都能实现高能效?如何在元器件数量减少的情况下,同时兼顾更高功率密度、散热管理与低抗电磁干扰(EMI)?等等。

电源适配器在小型化过程中正面临很多挑战,例如如何确保每个充电器在满载、半载、轻载以及待机时都能实现高能效?如何在元器件数量减少的情况下,同时兼顾更高功率密度、散热管理与低抗电磁干扰(EMI)?等等。

为帮助用户解决这些问题,安森美推出了自适应有源钳位反激控制器NCP1568和700V半桥驱动器NCP51530,在拓扑结构、性能参数等方面进行了调整。其中,NCP1568 ACF控制器具备先进的功能和灵活的操作,同时使用了SJ FET或GaN FET,且只需少量外部器件就可实现高密度的设计。NCP51530驱动器则是一款高速、高性能、强固的电源方案,包括针对汽车应用的AEC Q-100认证选择。

20181109-onsemi-1.jpg
安森美USB PD电源适配器方案

安森美半导体模拟方案部交流-直流电源管理高级市场推广经理蒋家亮表示,在传统的反激拓扑架构中,开关包含一个变压器和一个Mosfet,开关时产生的振铃会产生高频EMI。如果不想产生EMI,就需要周边的振铃电路来吸收,吸收掉就等于损耗掉,跑高频越多损耗越多,这就是传统的反激拓扑结构不能跑到高频的主因。

而在使用有源钳位反激架构之后,在上面多加一个Mosfet和一个电容,在同样有吸收能量的地方,当Mosfet关断时,全部能量会存储在电容里,有需要时再重新利用。只要把Mosfet的开关电压设置为零伏,下边的Mosfet就是零伏的电压开关,等于没有损耗。当Mosfet关掉时,可以把EMI损耗的能量全部重新利用,传递到二极管,等于整个电源转换过程不会有损失,这样既可以做高频,也可以实现低EMI,同时还会保持高能效,这就是有源钳位反激架构的优势。

NCP1568关键特性要点着重体现在以下三方面:

控制模式(包括自适应零电压开关频率调制支持可变的Vout、集成自适应死区时间和峰值电流模式控制);非连续导通模式(DCM)及轻载模式(可选过渡至DCM模式;频率返走,最小31kHz的频率钳位;静音跳跃消除可闻噪声;待机功耗小于30Mw);高压(HV)启动(700V HV启动JFET、集成高压开关节点检测以优化ZVS,内置欠压和X2放电)。

在自适应零电压(ZVS)开关方面,由于USB Type-C和USB PD既面向5V手机,也面向20V笔记本市场,所以需要根据功率的不同对负载点开关进行优化,减少开关导通损耗。另一方面,自适应死区的时间也是确保每个周期开关保持最佳状态的方法。NCP1568会监测开关节点,当电压降至12V以下,则在30纳秒(ns)内切换至低边驱动器。如在约 400/600ns内未发生ZVS(OTP选项),则低边驱动强制导通。此外,由于IC需要将周期调到轻载、待机部分,以前反激架构很难做到非常低的待机,可能有声音,通过这一功能,就可以实现静音跳跃消除可闻噪声的效果。

20181109-onsemi-2.jpg

 

采用NCP1568 USB PD 65W超高密度演示板的电源适配器尺寸相当于iPhone8手机的1/3。演示板采用超结(SJ)FET,工作模式为有源钳位反激及DCM,满载能效在120V时可以达到94%,在230V时可以达到94.6%。

20181109-onsemi-3.jpg
NCP1568 USB PD 65W超高密度演示板能效

至于未来氮化镓功率管是不是也适用于有源钳位拓扑?蒋家亮表示,这取决于客户目标。目前氮化镓价格较贵,所以在高密度部分,如果能用普通超结Mosfet做到高密度,那就是首选方案。但他也同时强调说,如果拓扑结构无法适配高频,即便选用氮化镓也是浪费。目前来看,只有有源钳位或者LLC零电压切换的拓扑结构才可以适配高频,所以用户在选择时一定要理性。

下图是NCP51530性能对比图。作为目前全球跑得最快的半桥驱动器,NCP51530从信号到输出的延迟为7纳秒,爬升和下降时间短,驱动器温度保持在45度左右,与NCP1568配合使用,就能够做出高频高密度方案。

 20181107-onsemi-1.png

“安森美的IC方案非常有弹性,无论是60瓦、90瓦,甚至可能做27瓦。目前市场比较流行的12瓦标准的充电器,也可以做到27瓦,所以相对来说密度非常高。”蒋家亮说,目前有源钳位反激式拓扑结构还比较新,市场接受程度还不高,正是该拓扑结构推广的机遇。

qrcode_EETCwechat_120.jpg

关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
LPDDR内存主要针对智能手机,因此专为低功耗和点对点连接而设计。但手机的快速发展也推动了LPDDR的快速发展,这就是为何LPDDR5X传输速率比商品DDR5 SDRAM更快。
在这篇文章中,我们将讨论Advantech(研华)如何帮助客户利用AOI生产PCB和IC。我们将重点介绍研华的由AMD驱动的AIMB-723工业级主板的新能力,它将开启基于AOI的视觉检测的新时代。
尽管有着积极的预测,人工智能半导体领域仍面临持续的挑战,特别是在性能和功效方面。因此需要进一步努力加强和完善设计,使基于人工智能的工作负载能够低功耗执行。
来到2024年,短短一个多月的时间,世界脑机接口行业就风起云涌,竞争趋于白热化。Neuralink的第一例实验已经开始,并获得了“令人鼓舞”的初步结果;然而,其最大的竞争对手Synchron也开始了动作,其推出的Stentrode曾被马斯克成为“遥遥领先”,当然,加州理工学院的功能超声也一直在追赶。国内清华大学也获得了重大突破:在四肢截瘫患者身上实现了自主脑控喝水。
自从2016年CES上,亿航推出空中载人无人机之后,飞行汽车一直在不断发展,2024 CES上,飞行汽车再次吸引了全球的目光。2024年,飞行汽车似乎要开始起飞。
一年一度的CES于当地时间2024.1.9-1.12举行,这是一场全球的消费电子盛宴,2024 CES上出现了几个鲜明的新技术趋势:人工智能PC快速崛起,全球首款内嵌生成式人工智能的乘用车面世,三星、LG显示技术获得了新的突破,AI电视开始兴起,氢动力在博世和现代汽车的推动下往前发展。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
点击蓝字 关注我们德州仪器全球团队坚持克服挑战,为电源模块开发新的 MagPack™ 封装技术,这是一项将帮助推动电源设计未来的突破性技术。  ■ ■ ■作为一名经验丰富的马拉松运动员,Kenji K
天眼查信息显示,天津三星电子有限公司经营状态9月6日由存续变更为注销,注销原因是经营期限届满。该公司成立于1993年4月,法定代表人为YUN JONGCHUL(尹钟撤),注册资本约1.93亿美元,
会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!再度出现,能否再次“出线”?文|覃洁兰近日,曾经在
会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!逐个击破现有痛难点。文|新战略半导体行业高标准、灵
‍‍‍‍上市PCB厂商竞国(6108)日前出售泰国厂给予陆资厂胜宏科技后,近日惊传台湾厂惊传12月前关厂,并对客户发布通知预告客户转移生產,最后出货日期2024年12月25日。至於后续台湾厂400名员
疫情后的劳动力囤积和强有力的员工保护规则掩盖了德国高薪制造业工作市场令人担忧的变化。根据联邦劳工办公室的数据,欧元区最大经济体德国的失业率在2019年春季曾达到历史最低点4.9%,现已上升至6%。虽然
9月6日,“智进AI•网易数智创新企业大会”在秦皇岛正式举行,300+企业高管及代表、数字化技术专家齐聚一堂,探讨当AI从技术探索迈入实际应用,如何成为推动组织无限进化的新引擎。爱分析创始人兼CEO金
近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆
随着汽车智能化升级进入深水区,车载ECU(域)以及软件复杂度呈现指数级上升趋势。尤其是多域、跨域和未来的中央电子架构的普及,以及5G/V2X等车云通信的增强,如何保障整车的信息与网络安全,以及防范外部