无线充电是个新兴市场,而其中无线快充(如苹果的7.5W定频调压及15W大功率快充)又是新的发展方向。

 无线充电是个新兴市场,而其中无线快充(如苹果的7.5W定频调压及15W大功率快充)又是新的发展方向。此外,无线充电解决方案也在从MCU过渡到SoC。

日前,在ASPENCORE旗下《电子工程专辑》、《EDN电子技术设计》和《国际电子商情》共同举办的“第18届电源管理论坛(秋季)——快充与无线充电”论坛上,意法半导体(ST)大中华暨南亚区工业产品与功率分离器件部门技术市场经理谭有志先生就介绍了其最新的基于SoC的解决方案(此前为MCU)。

041ednc20180819

那您可能好奇,这种解决方案相对MCU有何优势?相对市场上其他主流产品又有何特点?该公司对此与市场上2大主流厂家BELKIN和Mophie的产品进行了直接对比。

无线充电的构成

下图是无线充电的基本框图,左边是发射端,右边是接收端。谭有志介绍说,无线充电的线圈耦合类似变压器,只是它不是通过磁芯耦合,而是中间有一段距离。它的负载是变化的。距离包括纵向和横向也都有变化。另外,输出电压也有变化,例如是5V、12V、QC或PD适配器等。

042ednc20180819

接收端通过磁耦合从发射端吸收能量。发射端LC谐振的频率通常在200kHz以下。苹果推荐的定频方案所采用的频率在127.7k±6Hz。变频则通常在105~205kHz之间。300k以上则是磁共振(A4WP)。

然后是很重要的FOD(异物检测)和Qi NFC标准。金属异物会吸收磁场发热,而可能导致手机损坏。检测方法通常是Q值检测。这个算法较难,不太容易掌握。而且其中所涉及的通信易受干扰(太灵敏可能产生误判),因此很多厂商以前不做。

充电功率取决于接收端(主动),而非发送端(被动)。对于苹果的7.5W无线充电,快充通常只能维持大概13分钟,原因是手机刚开始充电时电流较大,导致发热,iPhone设置在37℃以上则会降功率。“如果拿风扇对着吹,则可以持续快充。”谭有志补充说。

Qi标准目前非常流行,它的频率不太高,包括BPP(5W)和EPP(15W)。A4WP则是采用磁共振,新能源汽车的充电主要基于这种方法。新能源汽车的充电目前还存在很多瓶颈。第一,6.78M频率很高,有网络匹配,开关、功率传输、EMI都很难处理。第二,对于3kW的应用,其充电效率不到60%,损耗非常大,相当于一个烤炉。当然,随着技术的发展,这个技术总有攻克的一天。

BPP中,1.0版本很原始,FOD检测都没有。1.1版是单向,不管Rx是否需要,Tx一直发。1.2版则是双向通信,它包括了EPP。

SoC产品一览

以下是ST的SoC产品(协议和控制策略等都写了进去)。其中2.5W设计很简单,不需要过Qi认证(Qi认证仅针对5W以上)。多线圈方案会选择功率最大的线圈去充电。

043ednc20180819

下面是无线充电的基本框图,Rx端包括输入电压的检测(OV、UV)、跟适配器的通信——与QC和PD都兼容。

044ednc20180819

往上走包括能量传输和通信。通信频率是一两百kHz,它采用LC谐振,类似正弦波,这个正弦波里又夹杂了2k的通信频率。无线充电的SoC方案相对简单,但pcb layout时,相关信号需要注意。

然后是Rx,它与Tx一样。

下面来看15W产品,它是变频方案。输入电压是5V到13V,多线圈单线圈都可以支持。它已获Qi1.2.3的证书——做正规产品或做出口需要过这个认证。这个认证对5W来说是3000美金,对15W是4000到5000美金,时间也不一样。

045ednc20180819

那这个产品有什么优缺点?

缺点:效率比竞争对手略低1%,原因是它采用半桥,而竞争对手搭的是全桥。半桥有一半没利用上,谐振电流在发射端会偏高、损耗偏大。

046ednc20180819

但优点也明显,半桥比全桥少了两个MOS管;待机好,基于强大的MCU做支撑,待机功耗能做到只有0.38Wh,基本不会发烫,而影响产品寿命。

无线充的指标包括效率、距离和FOD三大块,以下是ST和2大市场主流厂家BELKIN和Mophie的产品对比。FOD检测首先放在4个点位,慢慢往中间的点位移,或者反向移,看它能否进行保护。

047ednc20180819

定频是苹果要求,MFI要求定频调压。现在很多厂商做得有点打擦边球,要么是定频调占空比,要么是定频调幅或定频调相。这些方案能够满足短期需求,但不能长久,苹果在温水煮青蛙。

qrcode_EETCwechat_120.jpg

关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
金刚石以其优异的性能而闻名,长期以来一直有望应用于各种领域,但其作为半导体的潜力却一直面临着商业化的障碍。Advent Diamond公司在解决关键技术难题方面取得了长足进步,特别是制造出了掺磷的单晶金刚石,从而形成了n型层。
能量采集是低功耗电子设备供电技术发展的基本支柱,为实现对环境影响最小的可持续技术的未来铺平了道路。
台积电(TSMC)公布了最新的A16芯片制造工艺,改变了技术领先者的游戏规则。该工艺可能领先英特尔的18A节点。但目前还不清楚哪家公司将赢得工艺技术冠军。
为保证数据中心的稳定性和高效能,需要大量高功率输入电源以支持多个运算系统同时运行。在这种复杂的环境下,用户需要确保总电源与子系统之间建立有效的过流保护隔离,以防止局部故障影响整个系统的正常运作。
希荻微表示,通过吸收Zinitix成熟的专利技术、研发资源和客户资源,可以快速扩大其产品品类,特别是在手机和可穿戴设备等领域的技术与产品布局。此外,Zinitix的摄像头自动对焦芯片产品线与希荻微现有的音圈马达驱动芯片产品线有较强的协同性。
电动汽车的核心部件是为车轮提供机械动力和转矩的电机。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
点击蓝字 关注我们德州仪器全球团队坚持克服挑战,为电源模块开发新的 MagPack™ 封装技术,这是一项将帮助推动电源设计未来的突破性技术。  ■ ■ ■作为一名经验丰富的马拉松运动员,Kenji K
文|沪上阿YI路特斯如今处在一个什么样的地位?吉利控股集团高级副总裁、路特斯集团首席执行官冯擎峰一直有着清晰的认知:“这个品牌的挑战依然非常大。首先,整个中国市场豪华汽车整体数据下滑了30%~40%,
文|德福很多去成都旅游的朋友都有个疑惑——为什么在成都官方的城市标志上看不到熊猫,而是一个圆环?其实这个“圆环”大有来头,它被唤作太阳神鸟,2001年出土于大名鼎鼎的金沙遗址,距今已有三千余年历史。0
‍‍Mobileye 将终止内部激光雷达开发Mobileye 宣布终止用于自动驾驶的激光雷达的开发,并裁员 100 人。Mobileye 认为,下一代 FMCW 激光雷达对可脱眼的自动驾驶来说必要性没
‍‍近期,IC 设计大厂联发科宣布了2024年上半年度的员工分红计划,与8月份薪资一起发放。据外界估算,按照上半年税前盈余约648.66亿新台币(约 144.42 亿元人民币)进行估算,此次分红总额接
会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!逐个击破现有痛难点。文|新战略半导体行业高标准、灵
疫情后的劳动力囤积和强有力的员工保护规则掩盖了德国高薪制造业工作市场令人担忧的变化。根据联邦劳工办公室的数据,欧元区最大经济体德国的失业率在2019年春季曾达到历史最低点4.9%,现已上升至6%。虽然
9月6日,“智进AI•网易数智创新企业大会”在秦皇岛正式举行,300+企业高管及代表、数字化技术专家齐聚一堂,探讨当AI从技术探索迈入实际应用,如何成为推动组织无限进化的新引擎。爱分析创始人兼CEO金