本文是主题为“用于生物计量可穿戴设备的光学心率传感器”三篇系列文章的第一篇。本篇着重介绍这些传感器系统的工作原理和通过它们可以测量什么。

大部分可穿戴设备采用光电容积脉搏波描记法(PPG)来测量心率及其他生物计量指标。PPG是一种将光照进皮肤并测量因血液流动而产生的光散射的方法。该方法非常简单,光学心率传感器基于以下工作原理:当血流动力发生变化时,例如血脉搏率(心率)或血容积(心输出量)发生变化时,进入人体的光会发生可预见的散射。下图1介绍了光学心率传感器的主要元件和基本工作原理。

20180827-optical-heart-rate-1.jpg
图 1:光学心率传感器的基本结构与运行

光学心率传感器使用四个主要技术元件来测量心率:

• 光发射器 - 通常至少由两个光发射二极管(LED)构成,它们会将光波照进皮肤内部。


• 光电二极管和模拟前端(AFE) - 这些元件捕获穿戴者折射的光,并将这些模拟信号转换成数字信号用于计算可实际应用的心率数据。


• 加速计 - 加速计可测量运动,与光信号结合运用,作为PPG算法的输入。


• 算法 - 算法能够处理来自AFE和加速计的信号,然后将处理后的信号叠加到PPG波形上,由此可生成持续的、运动容错心率数据和其他生物计量数据。

光学心率传感器可以测量什么?

光学心率传感器可生成测量心率的PPG波形并将该心率数据作为基础生物计量值,但是利用PPG波形可以测量的对象远不止于此。尽管很难取得和维护精确的PPG测量结果(我们将在下一篇详细论述它),但是如果您能够成功获得精确的PPG测量结果,它将发挥强大的作用。高品质PPG信号是当今市场需求的大量生物计量的基础。图2是经过简化的PPG信号,该信号代表了多个生物计量的测量结果。
20180827-optical-heart-rate-2.jpg
图 2:典型的PPG波形

下面我们进一步详细解读某些光学心率传感器可以测得的结果:

• 呼吸率 - 休息时的呼吸率越低,通常这表明身体状况越好。


• 最大摄氧量(VO2max)– VO2测量人体可以摄入的最大氧气量,是人们广泛使用的有氧耐力指标。


• 血氧水平(SpO2) - 是指血液中的氧气浓度。


• R-R间期(心率变异率)- R-R间期是血脉冲的间隔时间;一般而言,心跳间隔时间越长越好。R-R间期分析,可用作压力水平和不同心脏问题的指标。


• 血压 - 通过PPG传感器信号,无需使用血压计即可测量血压。


• 血液灌注 - 灌注是指人体推动血液流经循环系统的能力,特别是在濒于死亡时流经全身毛细血管床的能力。因为PPG传感器可跟踪血液流动,所以可以测量血流相对灌注率及血液灌注水平的变化。


• 心效率 - 这是心脑血管健康和身体状况的另一个指标,一般来说,它测量的是心脏每搏的做功效率。

光学心率传感器带来的挑战

设计可穿戴设备上的光学心率传感器的难度很高,因为设计方法会受到人体运动的很大影响。为了弥补这一点,您需要强大的光力学和信号提取算法。图3说明了您在设计光学心率传感器时可能面临的部分主要挑战。
20180827-optical-heart-rate-3.jpg
图 3:集成光学心率传感器的主要挑战


光力学

下面进一步介绍有关PPG传感器集成的光力学考虑事项:

• 光力学耦合 - 在传感器与人体之间是否能够高效进行双向光导与耦合?使血流信号最大化和向传感器施加噪音的环境噪音(如日光)最小化,是其中的关键。


• 是否为人体部位使用了正确的波长?不同部位需要不同的波长,因为各部位的生理构造不同,并且环境噪音对不同部位的影响不同。


• 设计是否使用了多个发射器,它们的间距是否正确?发射器的间距很重要,正确布放才能确保您测量到足够量的正确类型的血流,且测量结果具有较少的伪影。


• 在体育锻炼或身体运动过程中,诸如皮肤与传感器之间的位移量等机械力学作用是否最小?这对许多佩戴可穿戴设备进行活动的常见情况都是个问题,比如跑步、慢跑和健身房锻炼。

信号提取算法

下面进一步介绍有关信号提取考虑事项的详细信息:

• 算法是否在多元化的人群中进行过验证?这一点很重要,只有进行过此类验证才能保证设备能够适应多种肤色、不同性别、不同体型和健康状况而正常运行。


• 算法是否有抵抗多种类型运动噪音的强健性?算法必须能够在各种活动期间正常工作,包括步行、跑步(高速稳定的跑步和间歇训练)、疾跑、健身房训练及打字或开车等日常行为。


• 算法是否能够持续改进,以便能够处理更多用例和新型生物计量?这种技术和可穿戴设备市场正在迅速发展,您必须不断创新,才可满足不断变化的客户需求。

我希望大家能够通过本篇博客了解一些有关PPG传感器系统工作原理及可测量内容的知识。本系列的下一篇博文将探讨将这种技术集成到各类设备(手表、健身手环和耳塞等)的最佳实践。

(“用于生物计量可穿戴设备的光学心率传感器”三篇系列文章第二篇:从50多个生物识别可穿戴产品开发周期得到的十大经验教训、第三篇:光学心率传感器技术在可穿戴设备中的新兴医疗应用

qrcode_EETCwechat_120.jpg

关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”

阅读全文,请先
您可能感兴趣
传统的康复机器人,尤其是外骨骼康复机器人,虽然在某些方面表现出良好的康复效果,但也存在诸多问题。这些设备通常体积庞大、价格昂贵、操作复杂,难以在家庭和社区广泛推广。因此,迫切需要一种便捷、柔软舒适的康复机器人……
目前脑机接口的基本分类包括穿戴式与植入式两种。其中,植入式脑机接口作为一种前沿技术,通过直接链接大脑与外部设备,为意识与AI的融合开启了全新的可能性。
王长明和他的团队开发了一套针对癫痫患者的认知和情绪管理的数字化方案。该方案包括电子化认知功能评估、在线认知训练以及自助式心理治疗三个部分,旨在通过数字化的手段,为患者提供全面、个性化的干预和治疗。
为了应对孤独症治疗的挑战,千丘智能团队开发了一系列基于虚拟现实(VR)和扩展现实(XR)技术的数字疗法产品……
自芯原微电子落户海口高新区以来,致力于打造集成电路设计研发中心,2023年成功入选省级工业设计中心。公司专注于智慧医疗、智慧康复领域,与海南重点高校合作建立创新实验室和实训基地,举办了“芯原杯”全国嵌入式软件开发大赛决赛等多项活动,为海南培养了大量集成电路设计人才。
“海南自贸港建设取得了显著成就,形成了包括贸易投资自由化便利化、跨境资金流动、人员进出自由便利、数据安全有序流动等在内的政策体系。”黄文聪强调,海南正充分利用其独特的自然资源和开放政策,推动产业升级,特别是在生物医疗领域。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
“ 洞悉AI,未来触手可及。”整理 | 美股研究社在这个快速变化的时代,人工智能技术正以前所未有的速度发展,带来了广泛的机会。《AI日报》致力于挖掘和分析最新的AI概念股公司和市场趋势,为您提供深度的
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
在科技浪潮翻涌的硅谷,马克·扎克伯格不仅是“脸书”帝国的掌舵人,更是以其谦逊低调的形象,在公众心中树立了独特的领袖风范。然而,在镁光灯难以触及的私人领域,扎克伯格与39岁华裔妻子普莉希拉·陈的爱情故事
 “ AWS 的收入增长应该会继续加速。 ”作者 | RichardSaintvilus编译 | 华尔街大事件亚马逊公司( NASDAQ:AMZN ) 在当前水平上还有 38% 的上涨空间。这主要得益
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播
极越汽车闪崩,留下一地鸡毛,苦的是供应商和车主。很多人都在关心,下一个倒下的新能源汽车品牌,会是谁?我们都没有未卜先知的超能力,但可以借助数据管中窥豹。近日,有媒体统计了15家造车新势力的销量、盈亏情
亲爱的企业用户和开发者朋友们距离2024 RT-Thread开发者大会正式开幕仅剩最后3天!还没报名的小伙伴,抓紧报名噢,12月21日不见不散!大会时间与地点时间:2024年12月21日 9:30-1