半导体产业可以从生物学中获得启示,以解决在目前传统计算架构下难以企及的性能与功率要求…

 为了满足人工智能(AI)和机器学习各方面日益成长的需求,近年来有大量的研究均着重于大脑启发计算,以突破计算性能和内存需求爆发等挑战。

这一类的研究如今开始开花结果。最近就有一家神经形态计算(neuromorphic computing)芯片开发商BrainChip宣布将在今年9月发表其芯片架构细节。

今年初,CEA-Leti首席科学家Barbara de Salvo解释,半导体产业可以从生物学中获得启示,以解决在目前的传统计算架构下难以企及的性能与功率要求。她描述了大脑突触的特征——在单一架构中包含内存和计算,能够构成大脑启发的非冯诺依曼(non-von Neumann)计算机架构基础。神经形态计算的最新趋势之一就是将神经元的值编码为脉冲(pulse)或棘波(spike)。

然后是欧洲一项称为“人类大脑计划”(European Human Brain Project)的神经形态计算计划,长期以来致力于建构两个大规模且独特的神经形态机器,以及打造下一代神经形态芯片原型。该计划最近发表了成果论文,首次全面仿真基于SpiNNaker硬件的80,000个神经元和3亿个突触的皮层微电路模型,以展现其于计算神经科学应用的可行性。
Markus_Diesmann_150.png
Markus Diesmann

该论文的共同作者——德国于利希研究中心(Jülich Research Centre)计算和系统神经科学系主任Markus Diesmann说:“大脑的能量消耗与今天的超级计算机之间存在巨大差距。神经形态(大脑启发)计算让我们能够研究使用电子组件能达到多么接近大脑能量效率的程度。”

他补充说:“目前还不清楚哪一种计算机架构最适于有效地研究全脑网络。欧洲的人类大脑计划和于利希研究中心进行了深入的研究,找出最佳策略以克服这个高度复杂的问题。今天的超级计算机需要几分钟的时间才能模拟现实的一秒钟时间,因此,针对学习这一类在现实中需要数小时和数天的过程,目前仍难以企及。”

微电路模型的仿真是在一个由6个SpiNN-5 SpiNNaker板组成的机器上进行,一共使用了217个芯片和1,934个ARM9核心。每块板由48个芯片组成,每个芯片中有18个核心,总共有288个芯片和5,174个核心可用。其中,每个芯片上使用两个核心进行加载、检索结果和模拟控制。而在剩余的核心中,仅使用了1,934个核心,因为这是仿真网络中神经元数量所需的全部核心数,每个神经元核心包括80个神经元。

另一位共同作者——英国曼彻斯特大学(University of Manchester)计算机工程教授Steve Furber说:“这是第一次在SpiNNaker或任何神经形态平台上详细地模拟皮质。这项模拟研究只使用了6块板子——但占掉了整个机器的1%。这项研究的结果将用于改善软件,使其得以减少到仅使用1块板子。”

全新神经形态SoC即将问世

BrainChip希望以其商用化的棘波神经网络芯片或神经形态系统单芯片(SoC),率先进入这一市场。该公司于澳洲证券交易所(Australian Securities Exchange)上市,但大部份员工(30名)都位于加州橘镇和法国图卢兹。

该公司于2016年9月收购了位于图卢兹的Spikenet——这是一家专精于软件棘波神经网络(SNN)的供应商,SNN可实时学习任何视觉模式,但不必经过密集训练,而且也只需使用极少的影像样本。其方式是以执行于x86平台的软件仿真SNN,而BrainChip一开始只是为了将神经元放入芯片中。

Spikenet的客户来自安全和游戏领域(许多客户在拉斯韦加斯拥有众多赌场),因此,这于BrainChip能够取得营收以及互补的产品——从整合其棘波神经元自适应处理器中受益。

人工神经网络可以分为两个领域——卷积神经网络(CNN,或称为深度学习),以及棘波神经网络(SNN),也称为神经形态计算(由于其仿真神经元功能)。CNN的基本功能是数学函数。
Bob_Beachler_brainchip_150.png
Bob Beachler

BrainChip营销和业务开发资深副总裁Bob Beachler在接受《EE Times》采访时表示:“在CNN中进行的是线性代数矩阵乘法,而深度神经网络只是一堆过滤器试图撷取可以放在一起的显著特征,以协助机器或系统识别某些对象——如视觉、财务或网络安全数据等。”。

Beachler补充说:“在棘波神经网络中,我们的基础功能并不是进行矩阵乘法,而是一种真实的神经元,让我们能将其建模为一连串的突触,其间的连接可能被抑制或强化。神经元本身则是一种整合功能,基本上用于计算棘波的数量——这些棘波透过突触传送数据。在SNN中的训练方式与在CNN中设置权重相反,如果不是加强就是抑制突触。这是它训练的方式之一。另一种方式则是在神经元本身设置阈值,但它是可加以修改的函数。”

Beachler补充道,“它训练了一种前馈控制途径,因此可说是无人监督的训练,而不是坐待记忆预先卷标好的数据集。他们直接看到也听到了现实世界,而且是无人监督的模式识别。”

180801_ND_2.png
棘波神经网络与卷积神经网络

在x86上得到证实

据Beachler表示,BrainChip以软件仿真模式证实其技术能在x86上执行,使用FPGA加速其棘波神经网络,同时,现在正开发其Akida NSoC。该公司预计在今年9月发布其芯片架构。

然而,为了利用其SNN推动市场进展,BrainChip已在本月推出其Akida开发环境——这是一个用于创建、训练和测试SNN的机器学习架构,为采用该公司Akida NSoC的边缘和企业产品提供系统开发的支持。

该开发环境包括其执行引擎、数据到棘波峰转换器,以及预先创建的SNN模型。该架构利用Python脚本语言及其相关工具和库,包括Jupyter、NumPy和Matplotlib。
180801_ND_1.png
Akida执行引擎包含Akida神经元、突触和多种支持训练方法的软件仿真。透过Python脚本中的API调用存取,用户可以指定其神经网络拓扑、训练方法和数据集以供执行。

该执行引擎以Akida神经元的结构为基础,可支持多种训练方法,包括无监督训练以及带有标签最终层的无监督训练。

棘波神经网络可在棘波模式上发生作用。开发环境本身接受由动态视觉感测(DVS)创建的棘波资料。然而,还有许多其他类型的资料可以与SNN搭配使用。嵌入于Akida执行引擎中的是数据到棘波转换器,可将诸如影像信息(像素)等常见的数据格式转换为SNN所需的棘波。开发环境最初将配备像素到棘波转换器,然后是用于网络安全、财务信息和物联网数据等存在大数据需求的转换器。用户还可以创建自己的专有数据,以便在开发环境中使用棘波转换器。

开发环境包括预先创建的SNN模型。目前,可用的模型包括以DVS格式现的MNIST多层感知建置、针对CIFAR-10数据集优化的七层网络,以及针对ImageNet数据集优化的22层网络。这些模型可以成为用户修改或创建自定义SNN模型的基础。

Beachler表示,BrainChip主要针对嵌入式视觉领域,此领域正积极应用机器学习,例如对象分类。“我们从许多不同的市场都看到了这一点:先进驾驶辅助系统(ADAS)和自动驾驶汽车、无人机、机器视觉等。”该公司还瞄准了网络安全和金融技术,因为Akida能够在无人监督的训练模式和大规模数据分析中找到模式。

那么,BrainChip将在9月发布这款神经形态SoC的哪些技术细节呢?Beachler说:“我们将采用纯数字工艺、标准CMOS以及我们最终决定的任何特征尺寸,无论是28nm还是14nm。我们并未进行任何深奥复杂的事情、相变内存、忆阻器之类的东西。我们坚信采用纯数字逻辑工艺。”

编译:Susan Hong

 本文授权编译自EE Times,版权所有,谢绝转载

qrcode_EETCwechat_120.jpg

关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”

阅读全文,请先
您可能感兴趣
Arm预计,到2025年将会有1,000亿台基于Arm架构的设备可具备人工智能功能,包括由Cortex-A、Cortex-M驱动的设备。
硬件若无软件支持就毫无意义。而软件始终是Arm计算平台不可或缺的一部分,其技术已经涵盖整个软件栈的各个层面。从底层固件和操作系统的开发,到与游戏引擎、开源社区和独立软件供应商(ISV)的战略合作,确保所有这些在Arm平台上都能“开机即用”。
随着大量AI手机、平板和PC涌入市场,各厂商在高端机型上激烈的AI功能竞争将很快会扩展到中档设备和汽车等广泛应用场景。同时,各厂家也在不断为已有功能增加新的特性(feature)。AI+Feature的融合互促将成为多个行业的热点。
汪洋特别提到,第十三届芯原CEO论坛五大预测之一是2028年用于端侧微调卡和推理卡的销售额将超过用于云侧的训练卡。目前,推理和端侧微调也是芯原重点关注的领域,同时也希望在这一发展趋势中寻找新的机遇。 
随着AI和HPC芯片需求的不断增加,半导体产业在不断挑战性能极限的同时,也面对着传统封装技术的限制。为了延续摩尔定律,先进封装成为满足这些新兴应用需求的核心策略。
随着对复杂IC的需求不断增长,供应商面临着越来越大的压力,需要在尽可能短的时间内交付最高质量的IC。本文阐述了测试工程在交付定制IC以满足这一需求方面的重要性。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
点击蓝字 关注我们安森美(onsemi)在2024年先后推出两款超强功率半导体模块新贵,IGBT模块系列——SPM31 IPM,QDual 3。值得注意的是,背后都提到采用了最新的FS7技术,主要性能
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
近期,多个储能电站项目上新。■ 乐山电力:募资2亿建200MWh储能电站12月17日晚,乐山电力(600644.SH)公告,以简易程序向特定对象发行A股股票申请已获上交所受理,募集资金总额为2亿元。发
12月18日,珠海京东方晶芯科技举行设备搬入仪式。插播:加入LED显示行业群,请加VX:hangjia188在10月31日,珠海京东方晶芯科技有限公司发布了Mini/Micro LED COB显示产品
有博主基于曝光的信息绘制了iPhone 17系列渲染图,对比iPhone 16系列,17系列最大变化是采用横置相机模组,背部DECO为条形跑道设计,神似谷歌Pixel 9系列,这是iPhone六年来的
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
扫描关注一起学嵌入式,一起学习,一起成长在嵌入式开发软件中查找和消除潜在的错误是一项艰巨的任务。通常需要英勇的努力和昂贵的工具才能从观察到的崩溃,死机或其他计划外的运行时行为追溯到根本原因。在最坏的情
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播
亲爱的企业用户和开发者朋友们距离2024 RT-Thread开发者大会正式开幕仅剩最后3天!还没报名的小伙伴,抓紧报名噢,12月21日不见不散!大会时间与地点时间:2024年12月21日 9:30-1
上个月,亿万富翁埃隆·马斯克谈到了年轻一代的生育问题。他强调生育的紧迫性,认为无论面临何种困难,生育后代都是必要的,否则人类可能会在无声中走向消亡。他认为人们对于生育的担忧有些过头,担心经济压力等问题