随着摩尔定律的脚步放缓,人工智能(AI)正成为半导体产业的新指导原则。接下来,从材料到组件——硬件、软件与系统——都必须以全新途径展开更多的协作...

“摩尔定律已死,人工智能万岁!”(Moore’s Law is dead, long live AI.)。这是半导体产业最近的一个新口号,就从日前于美国西部半导体展(Semicon West 2018)中一场由应用材料(Applied Materials)赞助的全天活动上响起。

应材新市场与联盟事业群资深副总裁Steve Ghanayem表示,“半导体工艺节点的时代列车即将迈入尾声。接下来,从材料到组件——硬件、软件与系统——都必须以全新途径展开更多的合作。”Steve Ghanayem原来负责应材的晶体管和互连部门,目前则致力于寻找收购和结盟的机会,协助该公司朝向摩尔定律(Moore’s Law)以外的方向进展。

当然,摩尔定律还没有完全消失;对于几家公司来说,朝向更小型芯片的竞赛也仍持续进行中。

在Semicon West的专题演讲中,应材首席执行官Gary Dickerson表示,该公司不久将发布新的晶体管材料,它能将漏电流降低三个数量级以上。对于芯片制造商而言,这项消息几乎就像2007年英特尔(Intel)在高k金属闸方面取得进展一样重要。但是,今天这样的进展只会影响到规模越来越小的设计社群和公司。

根据人工智能(AI)内存处理器(PIM)芯片设计公司Syntiant首席执行官Kurt Busch估计,7纳米(nm)芯片投片大约要花1亿美元,而从投片到第一款芯片产出大概要拖延到4个月的时间。“只有很少的公司能负担得起这样庞大的金额。而像我们这样的一家新创公司,可没办法负担1亿美元的天文数字。”

不久前才离开高通(Qualcomm)的服务器处理器架构师Dileep Bhandarkar说:“我越来越不那么热衷于最新的工艺节点了。它们对于像高通这样的公司十分有利,但并不适用于其他所有人。”

伯克利大学荣誉教授David Patterson表示,“我认为这大概就是摩尔定律终结的情况了。”他指出,台积电(TSMC)的晶体管成本持平,英特尔也在致力于生产10nm芯片,“而有95%的架构师认为未来都脱离不了专用处理器。”Patterson曾经参与Google TPU的设计。

最近才退休的前英特尔资深微技术影专家Yan Borodovsky则期望能从摩尔定律传承火炬至AI,使其成为指引半导体产业未来道路的一盏明灯。

他说:“我认为超越当今冯·诺伊曼(von Neuman)的架构将因‘超越摩尔定律’(more than Moore)而受益。例如,忆阻器交叉开关可望成为神经形态运算的基本组成部份……超越摩尔定律的世界很可能是关于你可以在特定区域放置多少种类的突触以及他们有多么复杂…。”

20180725-AI-1.jpg

应材准备发布可大幅降低漏电的晶体管材料(来源:Applied Materials)

为嵌入式系统打造超级计算机

致力于宣传所谓“新认知时代”(a new cognitive era)的IBM认知解决方案暨研究资深副总John Kelly III表示,支持包括AI的2兆美元业务决策,就建立在1.5兆美元的IT业务之上。

Kelly说:“我经历过摩尔定律的早期阶段,但现在发生的一些事情将真正改变这个世界,这些都与人工智能有关……这将带来50年或更久的技术创新,并将推动我们的半导体产业继续向前发展。”

IBM最近为美国政府研究人员打造了13mW Summit系统,这是第一台专用于处理AI任务的超级计算机,其中并搭载部份的辉达(Nvidia) GPU。Kelly说:“你不会再看到其他的传统超级计算机了——因为它们将在未来的运算中融入AI……。”

事实上,机器学习的一大挑战在于推动推论工作,以及最终在网络边缘为功耗受限的处理器进行训练任务。对于像百度(Baidu)、Facebook和Google等巨擘而言,采用当今的GPU可能要花数周的时间才能完成训练模型任务,这可说是个梦魇。

Syntiant的Busch说:“我们将在五年内看到边缘开始执行一些训练。一开始先在数据中心处理神经网络的前几层,而最后几层则在边缘处理——这是不可避免的。”

AI将成为许多产业领域的性能驱动力。针对以30格/秒(f/s)速率进行高解析(HD)视讯串流进行AI处理,大约需要每秒9.4TFLOS的运算效能。Nvidia首席科学家Bill Dally在主题演讲中表示,自动驾驶车将会需要许多像这样的高性能摄影机。

20180725-AI-2.jpg

IBM的Kelly宣传认知运算时代来临(来源:EE Times)

从材料到算法全面思考AI

随着AI设下了更积极的新性能目标,业界也提出了实现这些愿景的新技术方向,包括在新材料、工艺、电路、架构、封装和算法方面的研究。简言之,必须为AI重新思考每一件事。

加州大学洛杉矶分校(UCLA)电子工程学系教授Jason Woo说:“我们一直在考虑将MRAM或ReRAM作为闪存(flash)的替代方案……但是,AI为采用新兴内存与不同材料的交叉架构开辟了新的亮点,可用于实现更多的线性模拟微缩,就像可编程的忆阻器一样。”

Woo及其研究团队一直在探索整合逻辑功能的三端比内存数组。这是Syntiant和Mythic等新创公司以及IBM研究人员希望用于AI加速器(基于内存内运算)的新型编程组件。

由于AI工作负载的平行本质,也为封装技术带来了绝佳机会。为数据中心进行训练提供全光罩芯片设计的新创公司Cerebras Systems首席技术官Gary Lauterback说,我们不应该局限于单芯片设计,封装方面也有很大的潜力,可以克服在Denard微缩中遇到的瓶颈。

许多最新的数据中心芯片都采用了2.5D堆栈的逻辑和内存。同时,台积电正推出用于智能型手机和其他装置的众多晶圆级扇出封装版本,工程师还需要一个能因应AI需求的译码器。

Bhandarkar说:“从成本和性能来看,我还找不到任何理想的多芯片技术。至今见过最好的要算是英特尔的EMIB,但它也并非所有人都可以使用。”

Dally透过缩减神经网络的大小及其矩阵数学的精度,快速地简化了算法与任务。他说,采用混合精度数学,超级计算机老将Jack Dongarra因而能在Summit系统上带来exaFLOPS级的AI性能。

Nvidia的研究人员以低至2位展现浮点运算的愿景,而Imec研究机构则进一步探索单一位的途径。

Dally补充说,神经网络本身可以从根本上简化,以减少运算量。他说,即使只使用了10%的神经网络权重和30%的启动效能,其准确度也不至于降低到让人无法接受。SqueezeNet就是针对嵌入式AI的案例之一。

20180725-AI-3.jpg
Nvidia的Dally说神经网络需要减少一些权重(来源:EE Times)

量子计算机作为备用方案?

可怕的是必须走出已经熟悉的道路,但这也可能是一件好事。Dally说:“成为一名计算机架构师是一个非常激动人心的时刻。如今,就让摩尔定律其自然地发展吧!我们必须真的变得更加智慧。”

IBM的Kelly指出,如果这一切不幸都失败了,那么就得发挥量子运算的潜力了。IBM的实验室已开发出一套50个量子位(qubit)的系统了。

他说:“在50到100个量子位之间,系统将在几秒钟内完成运算,这是当今计算机永远达不到的……除了AI之外,这是我一生中见过的最重要的事情了——它改变了游戏规则。”

其他人则警告道,针对如何建构和使用量子系统,目前还有许多的基础研究正在进行中。

美国桑迪亚国家实验室(Sandia National Laboratories)首席技术研究员Conrad James说:“我们知道如何打造深度学习系统,但并不了解它们如何运作……而且我们现在仍然处于尝试不同技术的起步阶段。量子研究则恰好相反。我们了解数学和物理,但并不知道如何打造量子系统。”

随着摩尔定律逐渐式微,量子运算的未来还有很长的路要走。在指引未来发展方向的道路上,半导体产业几乎没有太多的选择。AI万岁!

编译:Susan Hong

本文授权编译自EE Times,版权所有,谢绝转载

 

qrcode_EETCwechat_120.jpg

关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”

  • AI将带动很多产业来发展
  • 太牛了
阅读全文,请先
您可能感兴趣
碳化硅(SiC)衬底已在电动汽车和一些工业应用中确立了自己的地位。然而,近来氮化镓(GaN)已成为许多重叠应用的有力选择。了解这两种衬底在大功率电路中的主要区别及其各自的制造考虑因素,或许能为这两种流行的复合半导体的未来带来启示。
金刚石以其优异的性能而闻名,长期以来一直有望应用于各种领域,但其作为半导体的潜力却一直面临着商业化的障碍。Advent Diamond公司在解决关键技术难题方面取得了长足进步,特别是制造出了掺磷的单晶金刚石,从而形成了n型层。
半导体技术因行业标准而生,也因行业标准而亡,但在某些时候,制造高度定制化甚至专有的存储器件是否有意义呢?
台积电(TSMC)公布了最新的A16芯片制造工艺,改变了技术领先者的游戏规则。该工艺可能领先英特尔的18A节点。但目前还不清楚哪家公司将赢得工艺技术冠军。
对零排放(ZE)基础设施的追求仍在继续,尤其是在加利福尼亚州。去年4月,加州空气资源委员会批准了一项法规,要求铁路公司用ZE机车取代柴油电力机车。零排放货运机车可能是个宏伟的目标,但实现起来却令人望而生畏。
随着新能源汽车的高速发展,欧盟在去年10月启动了对中国电动汽车对欧出口的反补贴掉擦汗,在今年6月12日公布了对中国进口的电动汽车拟征收的临时关税水平,欧盟拟对中国电动汽车加征最高38.1%的关税是基于反补贴调查的结果,并计划从7月4日起实施这一措施。
• 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
点击蓝字 关注我们德州仪器全球团队坚持克服挑战,为电源模块开发新的 MagPack™ 封装技术,这是一项将帮助推动电源设计未来的突破性技术。  ■ ■ ■作为一名经验丰富的马拉松运动员,Kenji K
文|沪上阿YI路特斯如今处在一个什么样的地位?吉利控股集团高级副总裁、路特斯集团首席执行官冯擎峰一直有着清晰的认知:“这个品牌的挑战依然非常大。首先,整个中国市场豪华汽车整体数据下滑了30%~40%,
文|德福很多去成都旅游的朋友都有个疑惑——为什么在成都官方的城市标志上看不到熊猫,而是一个圆环?其实这个“圆环”大有来头,它被唤作太阳神鸟,2001年出土于大名鼎鼎的金沙遗址,距今已有三千余年历史。0
会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!再度出现,能否再次“出线”?文|覃洁兰近日,曾经在
在德国柏林举行的IFA 2024上,AMD计算和图形业务集团高级副总裁兼总经理Jack Huynh宣布,公司将把以消费者为中心的RDNA和以数据中心为中心CDNA架构统一为UDNA架构,这将为公司更有
近日,又一国产SiC企业宣布实现了主驱突破,并将出口海外。据“行家说三代半”的追踪统计,自2022年起,国内主驱级SiC器件/模块开始在多款车型中得到应用,尤其是2024年,本土供应商的市场份额显著上
[关注“行家说动力总成”,快速掌握产业最新动态]9月6日,据“内江新区”消息,晶益通(四川)半导体科技有限公司旗下IGBT模块材料和封测模组产业园项目已完成建设总进度的40%,预计在明年5月建成。据了
展位信息深圳跨境电商展览会(CCBEC)时间:2024年9月11-13日 9:30-17:30地点:深圳国际会展中心(宝安)展馆:16号馆 16D73/16D75 展位报名注册准备好“观众注册”入场二
9月6日,“智进AI•网易数智创新企业大会”在秦皇岛正式举行,300+企业高管及代表、数字化技术专家齐聚一堂,探讨当AI从技术探索迈入实际应用,如何成为推动组织无限进化的新引擎。爱分析创始人兼CEO金
近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆