广告

IBM研发基于PCM的AI芯片,算力是GPU百倍

2018-06-27 08:05:57 机器之心 阅读:
IBM 近日提出的全新芯片设计可以通过在数据存储的位置执行计算来加速全连接神经网络的训练。研究人员称,这种“芯片”可以达到 GPU 280 倍的能源效率,并在同样面积上实现 100 倍的算力。该研究的论文已经发表在上周出版的 Nature 期刊上。
广告

用 GPU 运行神经网络的方法近年来已经为人工智能领域带来了惊人的发展,然而两者的组合其实并不完美。IBM 研究人员希望专门为神经网络设计一种新芯片,使前者运行能够更快、更有效。

直到本世纪初,研究人员才发现为电子游戏设计的图形处理单元 ( GPU ) 可以被用作硬件加速器,以运行更大的神经网络。

因为这些芯片可以执行大量并行运算,而无需像传统的 CPU 那样按顺序执行。这对于同时计算数百个神经元的权重来说特别有用,而今的深度学习网络则正是由大量神经元构成的。

广告

虽然 GPU 的引入已经让人工智能领域实现了飞速发展,但这些芯片仍要将处理和存储分开,这意味着在两者之间传递数据需要耗费大量的时间和精力。这促使人们开始研究新的存储技术,这种新技术可以在同一位置存储和处理这些权重数据,从而提高速度和能效。

这种新型存储设备通过调整其电阻水平来以模拟形式存储数据,即以连续规模存储数据,而不是以数字存储器的二进制 1 和 0。而且因为信息存储在存储单元的电导中,所以可以通过简单地让电压通过所有存储单元并让系统通过物理方法来执行计算。

但这些设备中固有的物理缺陷会导致行为的不一致,这意味着目前使用这种方式来训练神经网络实现的分类精确度明显低于使用 GPU 进行计算。

负责该项目的 IBM Research 博士后研究员 Stefano Ambrogio 在此前接受 Singularity Hub 采访时说:“我们可以在一个比 GPU 更快的系统上进行训练,但如果训练操作不够精确,那就没用。目前为止,还没有证据表明使用这些新型设备和使用 GPU 一样精确。”

但随着研究的进展,新技术展现了实力。在上周发表在《自然》杂志上的一篇论文中(Equivalent-accuracy accelerated neural-network training using analogue memory),Ambrogio 和他的同事们描述了如何利用全新的模拟存储器和更传统的电子组件组合来制造一个芯片,该芯片在运行速度更快、能耗更少的情况下与 GPU 的精确度相匹配。

这些新的存储技术难以训练深层神经网络的原因是,这个过程需要对每个神经元的权重进行上下数千次的刺激,直到网络完全对齐。Ambrogio 说,改变这些设备的电阻需要重新配置它们的原子结构,而这个过程每次都不相同。刺激的力度也并不总是完全相同,这导致神经元权重不精确的调节。

研究人员创造了“突触单元”来解决这个问题,每个单元都对应网络中的单个神经元,既有长期记忆,也有短期记忆。每个单元由一对相变存储器 ( PCM ) 单元和三个晶体管和一个电容器的组合构成,相变存储器单元将重量数据存储在其电阻中,电容器将重量数据存储为电荷。

PCM 是一种“非易失性存储器”,意味着即使没有外部电源,它也保留存储的信息,而电容器是“易失性的”,因此只能保持其电荷几毫秒。但电容器没有 PCM 器件的可变性,因此可以快速准确地编程。

当神经网络经过图片训练后可以进行分类任务时,只有电容器权重被更新了。在观察了数千张图片之后,权重会被传输到 PCM 单元以长期存储。

PCM 的可变性意味着权重数据的传递可能仍然会存在错误,但因为单元只是偶尔更新,因此在不增加太多复杂性的情况下系统可以再次检查导率。“如果直接在 PCM 单元上进行训练,就不可行了。”Ambrogio 表示。

为了测试新设备,研究人员在一系列流行的图像识别基准中训练了他们的神经网络,并实现了与谷歌的神经网络框架 TensorFlow 相媲美的精确度。但更重要的是,他们预测最终构建出的芯片可以达到 GPU 280 倍的能源效率,并在同样平方毫米面积上实现 100 倍的算力。

值得注意的是,研究人员目前还没有构建出完整的芯片。在使用 PCM 单元进行测试时,其他硬件组件是由计算机模拟的。Ambrogio 表示研究人员希望在花费大量精力构建完整芯片之前检查方案的可行性。

他们使用了真实的 PCM 设备——因为这方面的模拟不甚可靠,而其他组件的模拟技术已经成熟。研究人员对基于这种设计构建完整芯片非常有信心。

“它目前只能在全连接神经网络上与 GPU 竞争,在这种网络中,每个神经元都连接到前一层的相应神经元上,”Ambrogio 表示。“在实践中,很多神经网络并不是全连接的,或者只有部分层是全连接的。”
crossbar-arrays-of-non-volatile-memories
交叉开关非易失性存储器阵列可以通过在数据位置执行计算来加速全连接神经网络的训练。图片来源:IBM Research

Ambrogio 认为最终的芯片会被设计为与 GPU 协同工作的形式,以处理全连接层的计算,同时执行其他任务。他还认为处理全连接层的有效方法可以被扩展到其它更广泛的领域。

这种专用芯片可以让哪些设想成为可能?

Ambrogio 表示主要有两种方向的应用:将 AI 引入个人设备,以及提高数据中心的运行效率。其中后者是科技巨头关注的重点——这些公司的服务器运营成本一直居高不下。

在个人设备中直接实现人工智能可以免去将数据传向云端造成的隐私性顾虑,但 Ambrogio 认为其更具吸引力的优势在于创造个性化的 AI。

“在未来,神经网络应用在你的手机和自动驾驶汽车中也可以持续地学习经验,”他说道。“想象一下:你的电话可以和你交谈,并且可以识别你的声音并进行个性化;或者你的汽车可以根据你的驾驶习惯进行个性化调整。”

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。

  • 村田直播|小体积·大生态--GNSS技术如何重塑智能时代的位置服务边界 本文来源:物联网展行业变革:“位置即服务”正催生万亿级市场裂变数据洞察:2025年全球GNSS市场规模预计达680亿美元,年复合增长率28%,其中智能穿戴、资产追踪、工业安全三大场景贡献超50%。增量
  • 总投资10亿!阳光电源又一光储项目全面开工建设 2月17日,“南京江宁开发区”发文透露,阳光电源在南京新建的光伏储能项目已经全面开工建设,总投资达到10亿元。加入光储充交流群,请加微信:hangjiashuo888据报道,阳光电源南京研发中心项目是
  • 三星车规级电容在电动车高压DC-DC转换器中的作用 | 贞光科技代理品牌 引言 嘿,各位电动汽车的爱好者们!咱们今儿个就来聊聊电动汽车里那些“看不见,摸不着”,但又至关重要的零部件。要说电动汽车这玩意儿,那可真是科技含量满满,各种高精尖的技术都往里堆。但要让这些
  • 解析差分电路原理,输出电压为什么要偏移? 差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。差分电路的电路构型    上图是差分电路。    目标处理电压:是采集处理电压,比如在系统中像母线电压的采集处理,
  • UWB的跟随类市场,从小众逐渐扩大 本文来源:智能通信定位圈自动跟随类的产品属于比较酷炫功能的“黑科技”产品。要实现自动跟随的技术可以有很多,但是最常用的就是UWB,因为UWB定位精度高,现在的成本也在下降,手机中也开始逐渐普及UWB等
  • 中国反制!26家美国实体进入“黑名单” 3月4日,中国商务部接连发布三则公告,对26家美国实体/企业采取不同的管制措施。商务部公告2025年第13号显示,根据《中华人民共和国出口管制法》和《中华人民共和国两用物项出口管制条例》等法律法规有关
  • 最新面板价格趋势预测(2025年3月) 面板价格预测(3月)根据TrendForce集邦咨询旗下面板研究中心《TrendForce 2025面板价格预测月度报告》最新调研数据:2025年3月,电视面板与显示器面板价格预期上涨,笔记本面板价格
  • 高通5G创新:绝技齐发,比强更强,手机体验大提升! 高通又放大招了!3月3日,也就是MWC世界移动通信大会的第一天,高通正式宣布,推出自家的最新5G调制解调器及射频解决方案——高通X85。高通X85对于高通X85的发布,行业早有关注。因为高通的手机So
  • 中国智造 让动力永不停歇 为进一步推进商业信用体系建设,促进企业诚实守信经营,面向企业普及诚信与品牌建设的意义,指导企业加强诚信品牌建设,提升其整体竞争力,“崛起的民族品牌”专题系列节目以诚信为内涵,在全国范围内遴选出有行业代
  • 2024年中国洁净室工程行业产业链图谱、发展现状及未来趋势分析     内容概要:目前,全球半导体、光电等电子信息产业在世界范围内转移,东亚、东南亚等地区已成为世界电子信息行业的主要市场和发展重心;同时由于我国医药卫生、半导
广告
热门推荐
广告
广告
广告
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了