广告

决定5G未来的将会是哪些半导体工艺技术?

时间:2018-05-28 14:59:03 阅读:
在未来数年内,仍有数不清的机遇推动5G射频技术创新,而半导体工艺技术的发展无疑将扮演重要角色。从整个行业来看,从工艺和材料开发到设计技巧和建模,再到高频测试和制造,仍有很多工作需要完成。在实现5G目标的道路上所有学科都将参与其中,而半导体工程材料技术是重中之重。
广告

“随着5G技术的出现,现在成为一名射频微波工程师是一件令人激动的事情。在我们通往5G——下一代无线通信系统的道路上,工程设计社区有着数不清的挑战和机遇。”ADI公司无线技术部总监Thomas Cameron博士曾经撰文指出,作为射频从业人员对5G的到来充满期待,“5G代表着移动技术的演进和革命,已达到无线生态系统各个成员迄今发布的多项高级别目标。”如何迎接5G带来的机遇和解决相伴而来的挑战?在前不久的中国之行中,Thomas面对中国媒体采访侃侃而谈,其中半导体工艺技术成为其中重要的一环。

5G18052801
ADI无线技术部总监Thomas Cameron纵谈5G应用挑战

半导体工艺技术路线在5G之后的“新常态”

半导体工艺技术的发展路线几乎是全球电子技术核心技术发展的主要轨迹。第一代半导体材料以硅几乎数十年“霸屏”全球半导体产业,至今半导体器件和集成电路绝大多数都是基于硅材料。上世纪90年代以来,随着光纤通讯和互联网的高速发展,促进了以砷化镓(GaAs)为代表的第二代半导体材料的发展需求,成为制造高性能微波、毫米波器件及发光器件的优选材料,广泛应用于光通信、无线通讯、GPS导航等领域。

第三代半导体材料主要包括碳化硅(SiC)、氮化镓(GaN)、金刚石等,因其高禁带宽度特性(大于或等于2.3 电子伏特,又被称为宽禁带半导体材料),以及具有高击穿电场、高饱和电子速度、高热导率、高电子密度、高迁移率等特点,收到业内固态光源、电力电子、微波射频器件制造商的青睐,成为光电子和微电子等产业的“新发动机”。

为了满足5G时代三大场景的业务需求,5G对系统及器件提出了高速、宽带、低功耗、高频及低时延等多项技术要求。比如,5G系统的工作频率从低频到 100GHz,瞬时带宽从20MHz 到 1GHz,功率放大器的平均输出功率从几W到几十W。此外,5G系统还需要具有更高的工作效率,更低的能耗及更低的成本要求等。与当前成熟的Sub 6GHz的5G技术相比,寄予业界更大期待的微波和毫米波5G技术面临更大的挑战,半导体工艺技术的创新与变革首当其冲。

百花齐放的5G半导体工艺技术族谱

毫米波5G的一个信号链,其实在这里面有涉及很多不同的技术,例如低频的地方数字和转化器可以使用CMOS工艺,再往前端走像变频器这些集成电路会用一些SiGe工艺,然后到靠天线这个地方,再用砷化镓或者氮化镓的工艺,所以这是有很多技术的不同工艺技术的结合。“ADI是业界里面唯一一家能够提供从数字到整个天线这一整个solution的一个厂商。” Thomas表示。

“GaAs多年来一直是微波行业的主流技术,一流的微波系统通常采用GaAs元件实现。但SiGe工艺正在克服高频工作障碍,以便在多项信号路径功能上与GaAs一较高下。” Thomas指出,“特别是高性能微波SiGe Bi CMOS工艺具有波束成形系统所需的高集成度,惠及很多信号链以及辅助控制功能。”波束成型技术被认为未来5G微波和毫米波通信的关键技术。

5G18052802
ADI覆盖了从DC到100GHz的全部无线频段。

“取决于每个天线所需的输出功率,可能需要采用GaAs PA。然而,在微波频率下甚至GaAs PA(功率放大器)都效率较低,因为它们在线性区域内通常会发生偏移。” Thomas表示,微波PA的线性化是探索5G时代的必然选择,此趋势相比过去有过之而无不及。

那么作为传统集成电路的“霸主”CMOS技术在5G应用中将有哪些机会,能否占有一席之地?“各种文档都已明确指出,CMOS适合大规模调整(scaling),这点在60 GHz的WiGig(无线千兆网络)系统中已经得到了验证。” Thomas肯定的表示。值得指出的是,ADI在微波应用的CMOS半导体技术上的探索走到了业界前面,先后推出了多款创新的28nm CMOS高速转换器,针对4G/5G多频段无线通信基站、多标准生产测试系统和防御电子产品等GHz带宽应用场合而设计。“CMOS在5G的应用上具有高集成度低功耗和低成本的优势,目前ADI在更小的工艺尺寸去挑战并取得成就,这也是ADI未来努力的一个方向。” Thomas表示。

“考虑到目前尚处于开发的早期阶段,且使用案例也不甚明确,因而很难说CMOS是否、或者何时会用作5G无线电的技术选择。”Thomas指出,“首先必须完成很多通道建模和使用案例方面的工作,以便总结无线电规格以及未来使用微波CMOS的可行性。”这方面的技术探索无疑还会是未来市场竞争的焦点。

5G18052803
从数字信号到毫米波信号,不同的优势的半导体工艺技术覆盖了整个信号链。

本文总结:

在未来数年内,仍有数不清的机遇推动5G射频技术创新,而半导体工艺技术的发展无疑将扮演重要角色。正如前文所述,严格的系统工程通过在整个信号链中采用最好的技术实现最佳的解决方案。从整个行业来看,从工艺和材料开发到设计技巧和建模,再到高频测试和制造,仍有很多工作需要完成。在实现5G目标的道路上所有学科都将参与其中,而半导体工程材料技术是重中之重。

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • GaN与SiC:两种流行宽禁带功率半导体对比 碳化硅(SiC)衬底已在电动汽车和一些工业应用中确立了自己的地位。然而,近来氮化镓(GaN)已成为许多重叠应用的有力选择。了解这两种衬底在大功率电路中的主要区别及其各自的制造考虑因素,或许能为这两种流行的复合半导体的未来带来启示。
  • 欧洲氮化镓半导体厂商BelGaN申请破产,已获得多项竞标  氮化镓半导体市场正在快速发展,预计到2030年将在半导体市场中占据主导地位。然而,氮化镓技术的成熟度推进缓慢,成本与技术仍是关键突破点。尽管BelGaN在氮化镓技术上取得了显著进展,但由于需要大量投资以支持转型,公司在寻找额外投资时未能成功,最终导致破产。
  • 金刚石突破引领高性能电子产品的未来 金刚石以其优异的性能而闻名,长期以来一直有望应用于各种领域,但其作为半导体的潜力却一直面临着商业化的障碍。Advent Diamond公司在解决关键技术难题方面取得了长足进步,特别是制造出了掺磷的单晶金刚石,从而形成了n型层。
  • 能量采集和电机控制是可持续未来的希望 能量采集是低功耗电子设备供电技术发展的基本支柱,为实现对环境影响最小的可持续技术的未来铺平了道路。
  • 中国科学院开发出面向新型芯片的绝缘材料,助力突破物理极限 人造蓝宝石绝缘材料在阻止电流泄漏方面的机理主要归因于其独特的单晶结构和高电子迁移率。这种材料的单晶结构确保了电子在传输过程中的稳定性,即使在仅有1纳米厚度的情况下,依然能够有效阻止电流的泄漏。
  • 仅OTS内存为下一代计算带来希望 几十年来,半导体行业一直在寻找替代内存技术,以填补传统高性能计算系统架构中DRAM(计算系统的主内存)和NAND闪存(系统的存储介质)之间的空白。
  • 全球折叠屏手机快速增长,中国品牌压 • 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
  • AI网络物理层底座: 大算力芯片先进 AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
  • 奕斯伟计算DPC 2024:发布RISAA(瑞 奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
  • 重磅发布:Canalys 2024年中国云渠道 2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了