广告

人工智能开始在EDA领域大展身手

时间:2018-02-02 03:52:05 作者:Rick Merritt 阅读:
将机器学习应用于芯片设计开始取得重大进展。在本周举行的DesignCon大会上,电子设计自动化(EDA)使用人工智能(AI)成为最热门的讨论话题之一,在机器学习技术与应用方面也累积了许多研究成果……
广告

业界供应商和研究人员最近在将机器学习应用于棘手的芯片设计问题方面取得了重大的进展。从今年DesignCon大会上的一场专题讨论就可看出,在电子设计自动化(EDA)方面使用人工智能(AI)是目前十分热门的主题,不仅在本届大会上有多篇相关论文发表,专题讨论时也吸引众多与会者,现场座无虚席。

过去一年来,机器学习实现先进电子研究中心(CAEML)又增加了四家新的合作伙伴。这个由13家业界成员和3所大学共同组成的研究团队,目前正持续扩大其工作的广度和深度。

惠与科技(Hewlett-Packard Enterprise;HPE)杰出技术专家兼CAEML成员Christopher Cheng说:“去年,我们主要关注于信号完整性和电源完整性,而在今年,我们将产品组合划分为系统分析、芯片布局和可信任的平台设计,让研究的多样性取得了最大的进展。”

北卡罗来纳州立大学(NC State University)杰出教授Paul Franzon表示:“贝叶斯(Bayesian)优化和卷积神经网络(CNN)在可制造性设计(DFM)方面也显著提升了功能,我们开始考虑在设计过程中使用同步学习。”北卡罗来纳州立大学就是CAEML的三所合作院校之一。

另一所与CAMEL合作的学校——乔治亚理工学院(Georgia Institute of Technology)教授Madhavan Swaminathan说:“我们面临的挑战之一是取得公司的数据。因为他们的大部份数据都是专有的,因此我们经提出了几种处理机制。这些过程目前都运作得不错,但仍然比我们预期的更长得多。”

CAEML在成立之初就获得了亚德诺半导体(ADI)、楷登电子(Cadence)、思科(Cisco)、IBM、英伟达(Nvidia)、高通(Qualcomm)、三星(Samsung)和赛灵思(Xilinx)等九家厂商的支持,一开始感兴趣领域包括高速互连、电力传输、系统级静电放电、IP核心重用,以及设计规则检查。
CadenceAIroadmapx800
从Cadence描绘的发展蓝图来看,EDA产业目前开始进入AI应用的第二阶段(来源:Cadence)

Cadence Design Systems等EDA供应商早在1990年代初就开始研究机器学习。Cadence研发部资深总监David White表示,这项技术于2013年首次导入于其产品中,采用Virtuoso的一个版本,并利用分析和数据探勘为寄生参数撷取创建机器学习模型。

截至目前为止,Cadence已经为其工具提供超过110万种机器学习模型了,用于加速长时间的计算。下一个阶段的产品开发就是布局与绕线工具,使其得以向人类设计师学习,并推荐可加速运转时间的优化方案。White解释,这些解决方案可能结合使用本地和基于云端的处理,以利用平行系统和大型数据集。

机器学习技术与应用最新进展

Synopsys研发总监Sashi Obilisetty表示,在先进工艺节点上,采用现有算法的全局绕线(global routing)工具已经达到极限了,因此他们开始降低芯片数据速率,以实现时序收敛。

她补充说,台积电(TSMC)去年使用机器学习预测全局绕线,使得速度提高了40MHz; Nvidia则用机器学习来提供芯片设计的全面覆盖,同时减少模拟。

参加这场专题讨论的专家们说,他们看到了业界存在着使用各种机器学习技术实现自动化特定决策和优化整体设计流程的许多机会。

具体而言,研究人员正探索以更快速度的AI模型取代当今仿真器的机会。乔治亚理工学院的Swaminathan说,相对较慢的仿真器可能导致计时错误、模拟电路失调,以及导致芯片重新流片(respin)的建模不足等问题。此外,机器学习可以取代IBIS在高速互连中进行行为建模。

除了由亚马逊(Amazon)、Google和Facebook图片搜索和语音识别服务推广的神经网络模型以外,芯片研究人员也使用了数据探勘、统计学习和其他工具。

北卡罗来纳州立大学的Franzon则报告使用代理模型,在4次迭代中实现最终实体设计优化,相形之下,工程师还必须进行到20次。类似的技术被用于校准模拟电路,并为多信道互连设置收发器。
FranzonIterationsx800
研究人员展示代理模型在4次迭代中的表现,可望取代人类设计师(20次)(来源:NC State University)

AI可以在EDA工具(有时是指旋钮)中设置几十种选项,协助加速自动化过程。Franzon说:“这些工具设置了一些有时候定义不清的旋钮,经常与预期结果之间的关系模糊。”

HPE目前则结合使用神经网络和超平面分类器,依据固态硬盘(SSD)的电压、温度和电流等数据现场预测故障情形。

Cheng说:“训练所需的数据量庞大。到目前为止,分类器都是静态的,但是我们希望增加使用递归神经网络(RNN)的时间维度,以取代仅用好/坏标签,那么我们将会有故障时间(time-to-failure)的标签。未来,我们还希望将这项工作扩展到更多的参数以及一般的系统故障。”

编译:Susan Hong

本文授权编译自EE Times,版权所有,谢绝转载

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Rick Merritt
EE Times硅谷采访中心主任。Rick的工作地点位于圣何塞,他为EE Times撰写有关电子行业和工程专业的新闻和分析。 他关注Android,物联网,无线/网络和医疗设计行业。 他于1992年加入EE Times,担任香港记者,并担任EE Times和OEM Magazine的主编。
  • 华夏芯域名、专利等资产公开拍卖 拍卖标的包括三项域名以及15项软件著作权和14项专利。其中,三项域名的起拍价为13879元,15项软件著作权和14项专利的起拍价为15550元……
  • Rambus宣布推出业界首款HBM4控制器IP,以加速下一代AI工作负载 Rambus的HBM4控制器IP还具备多种先进的特性集,旨在帮助设计人员应对下一代AI加速器及图形处理单元(GPU)等应用中的复杂需求。这些特性使得Rambus在HBMIP领域继续保持市场领导地位,并进一步扩展其生态系统支持。
  • 谈谈Lunar Lake的低功耗设计:听说x86做不了低功耗? 一直听说x86指令集天生做不了低功耗,真的是这样吗?这篇文章着重谈谈酷睿Ultra二代是怎么考量低功耗的,有没有可能做到低功耗...
  • 寒武纪回应股价跳水,怒斥“假专家”言论 对于股价波动的原因,寒武纪表示,除了公司经营层面的因素外,还可能受到其他因素的影响。寒武纪还提醒投资者,应甄别信息来源,具体情况以公司公告为准。
  • 博通发布第三财季财报:除了AI芯片,其他芯片都不赚钱 此次财报也从侧面反应了半导体行业在AI业务上的强劲增长势头,但同时也暴露出非AI业务增长乏力的困境。
  • 范式要变:EDA企业的市场发展机会在哪儿? 今年的CadenceLIVE中国用户大会上,Cadence谈到在芯片领域之外,数据中心、生命科学、航空航天等系统设计领域的仿真技术应用相当有限,这对Cadence而言是重要的市场机会。与此同时AI技术的发展,也在推动着市场前行...
  • 全球折叠屏手机快速增长,中国品牌压 • 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
  • AI网络物理层底座: 大算力芯片先进 AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
  • 奕斯伟计算DPC 2024:发布RISAA(瑞 奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
  • 重磅发布:Canalys 2024年中国云渠道 2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了