广告

AI视觉成像芯片搅动千亿级新市场,毒药般SoC时代即将过去

时间:2018-01-25 08:55:53 作者:邵乐峰 阅读:
“这就像我们在淘宝上买东西,看到的都是卖家秀,拿到手的却是买家秀。这其中最大的差别,就是光线环境的问题。”
广告

“图像识别的卖家秀和买家秀之间,永远隔着一盏灯光的距离。”眼擎科技(eyemore)创始人&CEO朱继志日前在IF创新大会2018上发布全球首款AI成像芯片时说,“我们经常看到在各种图像识别比赛中,图像识别率很高。但在实际场景中,比如人脸识别,却没有任何一家厂商敢提供识别率数据,因为现场问题实在太多了。”

下图是朱继志在发布会现场分享的一张PPT。左边,是《花花公子》杂志御用模特Leina一张裸照的一部分。这张照片细节丰富、层次分明、边缘清晰,三十年来所有和图像算法相关的图片,都拿它来做标准;但实际在现场拍到的图片,却往往是右边的模样,根本无法识别。20180125-eyemore-1

“图像识别的卖家秀和买家秀之间,永远隔着一盏灯光的距离。”

“这就像我们在淘宝上买东西,看到的都是卖家秀,拿到手的却是买家秀。这其中最大的差别,就是光线环境的问题。”朱继志说,给美女拍照片,会设置很多灯光。然而现实生活中的光线环境是不可控的,遇到弱光、逆光、反光情况时,成像效果就很差,AI算法无法识别。

给人看的像素时代终结,给机器看的视觉时代开启

要解决卖家秀和买家秀的问题,就要靠视觉器官的进化,把视觉放在一个系统整体来看。首先是眼睛,在前端负责感知,产生图像;然后是大脑,在后端负责认知,它分析图像视觉;此外,还有第三部分—大脑如何控制眼睛,也就是双方怎样进行智能的交互?只有大脑、眼睛、脑眼交互这三部分都智能化了,才能说机器视觉是智能的。这也代表了人工智能在产业里发展的三个阶段:大脑的进化、器官的进化、大脑和器官交互方式的进化。
20180125-eyemore-2
视觉的三种智能

要了解眼睛这个成像器官的进化,就要先回顾一下成像技术的历史。成像技术从30年代美国的胶卷时代开始,代表厂商是柯达;80年代进入数码时代,产业转移到了日本,今天看到的所有的数码照片,都是源自80年代日本的成像架构,包括索尼、尼康、佳能等公司。然而到了AI时代,行业对图像的需求可能会发生本质的变化:图像不再是给人看的,而是要给机器看。

给人看的时候,关注的自然是像素,喜欢自拍的姑娘,一定会关心手机前后摄像头是多少像素。然而当大家开始用iPhone X刷脸的时候,似乎又没有多少人关心摄像头的像素问题。因为常识告诉我们,人眼看世界的时候,是没有像素概念的。

人眼是人类长期进化的结果,最强大之处在于对环境的适应能力。正常情况下,看哪里都是清楚的,颜色都是对的,不存在卖家秀和买家秀的问题。相比之下,机器和人眼最大的差距,就是适应性太差,而要解决适应环境的问题,机器能用的资源只有三种:算力、算法和数据。

为了解决各种复杂光线问题导致的问题,眼擎科技使用了各种新型的算法,计算复杂度是数码成像的50倍以上,通过对大量场景数据的测试,使得成像引擎能够像人类眼睛一样自动的适应各种环境,消除各种光线环境的影响,输出稳定的视觉图像。

从IoE到VoE,新的千亿级市场诞生

视觉技术分为两种:成像(imaging)和图像处理(image processing)。前端成像技术负责生成视觉图像,后端图像处理负责分析、识别、处理视觉图像。换句话说,成像相当于人的眼睛,图像处理相当于人的大脑。

目前人工智能领域的明星公司,包括商汤、旷世、地平线、云从、依图、深鉴等,都是基于图像处理算法为核心技术的独角兽公司。在过去的三年里,受深度学习技术的驱动,图像处理获得了飞速的发展,但前端的成像技术,仍然停留在二十年前的水平,成为AI视觉未来发展以及商业应用落地的严重的瓶颈,也是当前各大AI公司的下一个必争之地。

“AI将带动成像技术和产业从像素到视觉的一次大的变革和颠覆。中国是AI视觉产业落地最快的地方,我相信,这个新的成像技术的第三个阶段,会由中国主导。”朱继志说。

和数码时代相比,AI时代的成像在成像架构、算法模型、评判标准、光线适应性等诸多关键环节都发生了本质上的变化,传统的数码成像技术架构已不能满足AI视觉的需求,面临迅速被淘汰的窘境。未来五年,成像技术将有望完成从“图像”到“视觉”的划时代升级,视觉成像芯片和AI处理芯片一样,成为人工智能的核心部件,由此衍生的产业升级需求,将在未来五年催生出成像领域千亿级别的新增量市场。
20180125-eyemore-3
从IoE到VoE,新的千亿级市场诞生

给机器配置视觉中枢

算力、算法和数据集成到一起成为产品,就是一颗芯片,比如眼擎科技此番推出的全球首款AI视觉专用成像芯片Eyemore X42。这颗芯片采用了全新的成像引擎架构,集成了超过20种的新型成像算法,感光度最高可以达到40万,单次曝光动态范围可以超过16bit,最大功耗在1.5W以内。
20180125-eyemore-4
全球首款AI视觉专用成像芯片Eyemore X42

完全自主研发的eyeMix、eyeNoise等核心成像算法构成了X42的基础。它抛弃了传统的日系全局成像架构,转而采用分区域、分层的Eyemore成像引擎架构,解决了视觉成像中存在的弱光、逆光、反光等痛点。
20180125-eyemore-5
Eyemore成像引擎

“做成像芯片其实是一件很苦逼的事情。眼擎科技成立四年了,很多人都在问我这期间做了什么?我只能苦笑着说我们在调试图像,在调试图像,在不停的调试图像。因为成像是一个主观性比较强的事情,我们测试了500+以上的场景,前后耗时四年,才打磨完成了这款全球首个面向AI视觉应用领域推出的成像芯片。”看得出来,朱继志在回忆往事时也是不胜唏嘘。

Eyemore X42的使命只有一个,那就是成像,就是要使成像引擎在各种复杂光线环境下,能排除现场光线的干扰,给AI视觉算法输出稳定可靠的高品质视觉图像,尤其是在微弱光线下超越人眼的视觉成像能力,帮助众多AI公司客户解锁更加丰富的应用场景。而为了提高芯片的成像性能,研发人员甚至将标准的视频压缩功能全部去掉。朱继志对《电子工程专辑》表示,这就好比Intel的CPU虽然集成了显卡功能,但Nvidia的专用GPU一定是未来的主流。

未来是个软件定义硬件的世界,朱继志对此也深信不疑。所以,在X42的芯片架构中,所有的底层成像功能与各种算法都是可以被调用的。与传统成像产品的“黑盒”属性不一样,X42芯片是一个“白盒”,可以提供完整的开发工具,支持各种平台(包括Windows、Linux、Android、iOS)的开发接口API。这样做的目的,也是希望让所有的视觉算法工程师不必懂任何硬件,就能够精确的掌控成像效果,从而提升AI视觉分析算法的效率和准确性。
20180125-eyemore-6

三年完成500家公司的Design-in

然而,一颗全新的芯片出来,谁会相信你?谁敢用?怎么用?

在创立眼擎科技之前,朱继志在国内最大的芯片分销公司工作了八年,负责推广各种类型的芯片。他深知芯片行业通行的规则,是要客户在使用一颗全新的芯片之前,必须准备好一系列的方案。首先是要有开发工具套件,让客户可以先学习调研;当项目明确之后,要有产品模组,帮助客户快速产品化;当产品销售上了批量,被完全验证之后,才会直接使用芯片;如果量再大,还需要提供IP授权;如果客户有特殊的要求,还需要提供深度定制。这套完整的流程,就是传说中的Design-in。目前,眼擎科技AI视觉产品生命周期全栈式成像解决方案已经准备就绪,所有客户即刻就可以开始使用。
20180125-eyemore-7
眼擎科技AI视觉产品生命周期全栈式成像解决方案

众所周知,芯片行业有属于自己的固定周期。做一颗原创芯片,从技术开发,到市场大规模成熟应用,一般需要接近七年的时间,也就是“3+2+2”模式:三年开发,两年推广,两年成熟。按照这一规律,成立于2014年的眼擎科技在经历了3年开发期后,2018年将开始进入规模推广期。
20180125-eyemore-8
芯片开发的“3+2+2”模式

在朱继志为公司规划的三年市场战略中,眼擎科技将重点布局四个市场应用方向:1、自动驾驶的视觉成像;2、智能手机的AI成像;3、基于人脸识别的高端智能安防;4、包括军工和医疗在内的工业视觉成像。到2020年底,眼擎科技通过完成超过500家的AI视觉客户的design-in,占领50%以上的AI视觉成像市场,成为新兴的AI视觉成像技术的全球领导者。同时,眼擎科技将围绕视觉成像技术,建立完整的成像生态,与AI视觉产业链的各个环节合作,包括共建实验室、战略合作、联合开发、技术授权等多种方式,共同推进AI视觉的发展,为下一个阶段将“Eyemore Inside”推向千亿级数量的视觉应用奠定基础。

“3D结构光电商扫描仪产品”是朱继志在现场分享的一个实际案例。一家做“深度相机”的厂商此前在为电商扫描商品的3D模型时使用了两个成像模组,一个拍结构光,一个拍彩色画面。而在采用眼擎科技的分时复用方案之后,仅仅用一个成像模组就解决了问题。然后,再通过交互接口API大幅提升了AI视觉算法的效率和准确率,这在以前是不可想象的。
20180125-eyemore-9
Eyemore成像引擎应用案例

关于AI、视觉与芯片一些思考

● 第三种智能

所谓的“第三种智能”,其实是指AI与视觉的关系。AI做的是大脑,成像做的是眼睛。这里就存在一个问题:大脑该如何控制眼睛?传统的技术方法是定义一个通信控制接口,但在视觉应用中这种做法会非常复杂。比如,人眼有一个特点,就是“定睛一看”。通俗而言,就是人眼的成像是非常聚焦的,只看到关注的东西,其他都是模糊的。当AI算法解决了“要看什么”的问题后,前端成像就有了目标,可以把所有的资源都调配到关注的对象上,做到“指哪打哪”。这种根据AI的需求来成像,能解决很多以前解决不了的问题。从半年前开始,眼擎科技将大脑和眼睛的交互接口的开发当作重点来突破,也希望能跟更多的AI算法公司合作,共同推进大脑和眼睛交互的“第三种智能”。

● 从一家独大到三国鼎立

朱继志表示,以前,主流的处理器都集成了图像功能,包括成像和图像处理,但位置很不重要,这是Intel模式;现在,视觉处理成了核心,以前被集成的视觉部分会被分拆出来单独成为一颗芯片,这是Nvidia模式,其他的AI芯片也都是这个思路。同样的,集成的成像功能处理能力也不够,也会被从SoC处理器中独立出来,这就是Eyemore成像芯片正在做的事情。俗话说,“天下事,分久必合,合久必分”,以前芯片行业是CPU一家独大,现在因为视觉的原因,变成三分天下了。也就是说,视觉影响了芯片的行业格局。
20180125-eyemore-10
AI时代,芯片行业将从一家独大变为三国鼎立

● 去中心化的AI视觉产品产业链

区块链是最近极火的概念,其核心思想就是去中心化。同样的,在AI产业链中,也在上演去中心化的过程。朱继志指出,传统的硬件产品中,最核心的是CPU处理器,操作系统运行在CPU上,谁掌握了这个入口,谁就成了中心,比如Intel、高通、MTK这些芯片都是中心。但在AI产品里,AI算法和数据运行在包括GPU在内的AI大脑芯片上,CPU将不再是中心。

在中心化时代里,CPU会不断集成各种功能,最终成为turn-key的SoC模式。当芯片集成了所有功能之后,所做的产品就会变得毫无差异化,最后比拼的只剩制造能力和销售能力。而在AI时代,即便用同样的芯片,不同的产品也会因为不同的算法和数据,产生极大的差异性和更大的市场价值,这就是在芯片去中心化后对AI产品产生的最大价值。
20180125-eyemore-11
去中心化的AI视觉产品产业链

本文为《电子工程专辑》原创,版权所有,转载请注明出处并附链接

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。

 

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
邵乐峰
ASPENCORE 中国区首席分析师。
  • 晶圆级脉冲激光沉积将改变游戏规则 一项技术要想产生广泛的影响,它不仅要解决短期的挑战,还应该超越现有技术的进步,为未来的创新打开大门。这就是我们对泛林集团(Lam Research)今年早些时候推出的全球首个用于半导体量产的脉冲激光沉积(PLD)技术的描述。
  • 晶合集成与思特威首颗集成1.8亿像素全画幅CIS芯片成功试产 当今这个数字化时代,图像传感器技术的发展对于摄影、安防、医疗等多个领域的重要性不言而喻。近日,合肥晶合集成电路股份有限公司与国内设计公司思特威联合宣布,他们共同研发的首颗1.8亿像素全画幅(2.77英寸)CMOS图像传感器(CIS)已成功试产。
  • 为什么相干激光雷达在ADAS和汽车传感领域越来越受欢迎 激光雷达正在迅速获得人们的关注,并被广泛用于ADAS和自动驾驶汽车传感系统,但该技术有多种实现方法。本文介绍了这些方法以及相干激光雷达检测的相对优势。
  • 设计汽车雷达系统的挑战 雷达在新型汽车设计中随处可见。现在,高清雷达可以在所有天气条件下发挥作用,可以作为AI物体检测的前端,与其他传感器通道相辅相成,进一步提高准确性和安全性。高价值嵌入式雷达系统的制造商有着巨大的潜力。然而,如何在竞争中发掘这种潜力可能是一项挑战。
  • 面对欧盟效率和空载功耗两大新要求,BLDC设计怎么破? BLDC的应用持续增长,主要市场驱动力来自于以下几个方面:工业类电机应用节能指令提出了新要求;印度对于吊扇应用,致力于实现50%的节能目标;越来越多设备的终端客户,希望有更好的使用体验。
  • 马斯克:正与首位脑机芯片受试者讨论植入第二代芯片 据悉,Neuralink公司正在积极推进第二阶段的临床试验。该公司已获得美国FDA的批准,将在6月份对受试者进行芯片植入手术。
  • 全球折叠屏手机快速增长,中国品牌压 • 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
  • AI网络物理层底座: 大算力芯片先进 AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
  • 奕斯伟计算DPC 2024:发布RISAA(瑞 奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
  • 重磅发布:Canalys 2024年中国云渠道 2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
  • 2.4亿美元!“果链”捷普科技在印度设厂! 周二,捷普科技(Jabil)官员与印度泰米尔纳德邦代表团在泰米尔纳德邦首席部长MK Stalin的见证下,签署了一份备忘录。MK Stalin正在美国进行为期17天的访问,旨在吸引新的投资。MK St
  • 发奖金,人均105万,1.2万人有份! ‍‍近期,IC 设计大厂联发科宣布了2024年上半年度的员工分红计划,与8月份薪资一起发放。据外界估算,按照上半年税前盈余约648.66亿新台币(约 144.42 亿元人民币)进行估算,此次分红总额接
  • 2032年单晶硅市场营收将增至201亿美元! 据市场调查机构Allied Market Research的《单晶硅晶圆市场》报告指出,2022年单晶硅晶圆市场价值为109亿美元,预计到2032年将达到201亿美元,2023年~2032年的复合年均
  • 【光电通信】特种光纤与光纤通信-236页收藏  今日光电      有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来----来源:通信大讲堂申明
  • 【光电智造】机器视觉三维成像方法及应用  今日光电      有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来----来源:机器视觉沙龙申
  • 该国产SiC将上主驱,还有20家企业取得进展... 近日,又一国产SiC企业宣布实现了主驱突破,并将出口海外。据“行家说三代半”的追踪统计,自2022年起,国内主驱级SiC器件/模块开始在多款车型中得到应用,尤其是2024年,本土供应商的市场份额显著上
  • 60%汽车供应商裁员! 疫情后的劳动力囤积和强有力的员工保护规则掩盖了德国高薪制造业工作市场令人担忧的变化。根据联邦劳工办公室的数据,欧元区最大经济体德国的失业率在2019年春季曾达到历史最低点4.9%,现已上升至6%。虽然
  • 骄成超声:引领超声波技术革新,助力碳化硅产业升级 8月28-30日,PCIM Asia 2024展在深圳举行。“行家说”进行了为期2天的探馆,合计报道了200+碳化硅相关参展企业(.点这里.)。其中,“行家说”还重点采访了骄成超声等十余家企业,深入了
  • 华为大突破! 在苹果和华为的新品发布会前夕,Counterpoint公布了2024年第一季度的操作系统详细数据,数据显示, 鸿蒙操作系统在2024年第一季度继续保持强劲增长态势,全球市场份额成功突破4%。在中国市场
  • 下线、投产...这3个电驱动项目传最新进展 近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了