广告

是时候让车用雷达回归模拟技术了

时间:2017-11-02 08:57:31 作者:Junko Yoshida 阅读:
车用雷达通常是最先在道路上“看”到东西的传感器,而且能在传感器融合处理以前,利用内建的AI引擎初步分类所看到的东西,现在正是让雷达平台回归模拟的时候了!一家新创公司认为“我们仍然存在于模拟世界,汽车也是如此”...
广告

为了在高度自动化的车辆中增加对于现实世界的情境意识,许多汽车制造商开始接受在每个机箱周遭布署各种传感器类型的必要性。然而,他们并未考虑到的是这些传感器的质量。例如,当今的视觉、光达(LiDar)与雷达传感器的性能如何?车用传感器需要具备哪些要求?

Metawave是今年初才从Xerox PARC研究中心独立而出的新创公司,但有信心能改变汽车产业所认定的“传统雷达限制”。目前,车用雷达“看”不到遥远的物体,也无法辨别所看到的东西。其处理速度还不足以因应在高速公路行驶时运作。

简言之,摄影机或光达都能看到的物体,当今的车用雷达不一定都能看到。它唯一可取之处在于能在全天候的情况下运作。

Metawave在今年一月成立,凭借着从PARC获得的专有授权为超材料雷达与天线进行商用化,目前正大力宣传其“全雷达封装”技术。Metawave计划在2018年1月的国际消费电子展(CES)上展示这款原型。

超材料是布署于印刷电路板(PCE) 上的小型软件控制工程结构。据该公司指称能以从前仅限于军用系统(较强大且昂贵)的方式导引电磁波束。

然而,Metawave并未把当今车用传感器的问题归咎于雷达芯片——主要是由恩智浦(NXP)、英飞凌(Infineon)或德州仪器(Texas Instruments;TI)等供货商所设计。事实上,Metawave的全雷达封装并不受特定雷达芯片限制。相反地,该新创公司认为问题出在雷达传感器(包括天线)中的波束成形技术,导致了分辨率与速度方面的问题。

回归模拟
Maha Achour_130_1507913737
Maha Achour

Matawave首席执行官Maha Achour认为,现在正是业界让“雷达平台回归模拟”的时候了。她强调,“我们仍然存在于模拟世界,汽车也是如此。因此,Metawave计划打造一个可负担的高性能模拟雷达平台,而不至于面对像军事级操作时的复杂度和成本。”
block diagram based on metawave analog radar_1507867067
Metawave的模拟雷达技术基于电子转向控制天线。它采用具有双端口的单根天线,一端连接到发射器(Tx)或接收器(Rx)链路,另一端连接到微控制器(MCU)。该MCU透过使用查找表(LUT)定义和控制天线波束宽度与方向,从而使Metawave的模拟雷达得以实现微秒级的速度扫描。(来源:Metawave)

Achour声称,Metawave利用单一天线设计出新的模拟雷达,能以水平和垂直方向引导和形成光束,并从更宽的视野调整光束到非常窄的圆锥角度——低至1度。Achour说:“我们能以非常快的速度实现——微秒级的速度扫描。”

但是,Metawave的模拟雷达如何与现在广泛用于车辆中的数字雷达进行比较?

基于数字波束成形(DBF)技术的雷达需要天线数组,用于聚焦发射器以特定方向发射的电磁信号,并将其转向其他方向。然后,接收器再从对象撷取返回信号,并以数字方式进行处理,最终形成场景的影像。

为了实现这一过程,Achour解释,数字雷达必须“为每根天线注入不同的相位延迟,使波束在同一方向聚拢,并沿着其他方向扩展。”

DBF的缺陷在于相位延迟。运算需要复杂且冗长的数字信号处理。Achour指出:“这种密集的信号处理导致极慢的反应速度(在转向光束时为毫秒延迟)和较差的‘集体’辐射模式,因为光束被转向远离天线准线(零度角)。”
conventional digital beam forming system_1507867471
目前用于车辆中的数字雷达传感器采用数字波束成形技术,并透过复杂且冗长的数字信号处理来计算相位延迟(即图中的权重—wi)。天线具有静电辐射,而且有赖于于数字权重以形成和转向控制光束(来源:Metawave)

因此,她说:“这些传统雷达由于控制不好主瓣和旁瓣,因而无法在长距离时以广角观察。”

对远程物体作出决定

目前与Metawave共同合作的顾问兼投资人Drue Freeman表示,“针对自动驾驶车辆,我认为架构师必须解决的最大问题之一就是能够对远离车辆的物体做出决定。”否则,自动化车辆的最高速度将会受到限制,Freeman指出。

Freeman说:“今日的雷达解决方案即使采用了最佳的数字波束成形技术,或许能可靠地看到车子前方200公尺处的距离,也能侦测到有‘东西’在那里,但他们没法辨识那是什么。”

而现实情况是DBF不是支持高分辨率就是高信噪声比(SNR),并非二者兼具。

超材料

Metawave声称其目标在于提供类似于用于追踪导弹的高性能雷达,但又不至于产生像军事应用所需要的成本、复杂度和功耗。Achour说,Metawave的模拟雷达“仿真了相位数组”,就像军用天线一样。但该新创公司能在无需仰赖军事应用部署的移相器下实现这一点,因为它利用了自家的超材料。
Metawave_M-FAST_Technology_original_1507866800
Metawave的超材料频率自适应转向技术(来源:Metawave)

Freeman坦承:“Metawave让人感到振奋的是其基于超材料的模拟波束成形技术,让他们能精确地控制雷达波束,实现更快的操作速度以及更好的SNR,而不至于牺牲分辨率。”

Metawave首席技术官Bernard Casse表示,超材料除了可为雷达和天线实现“视觉”和“速度”外,Metawave的模拟雷达还将带来“智慧”。Metawave已为其模拟雷达嵌入了人工智能(AI)引擎。

在该AI引擎内部是一系列的算法,Casse解释,“除了深度学习(deep learning)和决策算法以外,还包括测距多普勒(range-Doppler)评估算法、杂波和干扰抑制算法、对象侦测和追踪算法,以及其他专有的电磁和雷达程序代码等。”

雷达中的AI引擎究竟能学习什么?Casse说:“它高度取决于场景。”例如,如果一辆车行经桥下,将会遭遇许多信号反射。AI引擎可以在各种干扰下进行分类与排序,并协助雷达定位必须查看的物体。

Freeman说:“Metawave的案例极具意义,因为在许多情况下,雷达将成为最先在道路上‘看’到东西的传感器,而且能在传感器融合处理以前,利用AI引擎初步分类所看到的东西。”

The Linley Group资深分析师Mike Demler说:“每一种传感器都有其局限性,所以不用说也知道有许多雷达失败的例子。但是,还有更多可能的情况是软件未能正确解读信号。”

他指出,“最糟糕的案例是特斯拉(Tesla)自动驾驶车日前在佛罗里达州发生的意外事故,原因就出在Tesla的自动驾驶系统未侦测到白色货车穿越其车道而酿祸。车用雷达一直是相对较便宜的传感器,主要用于简单的测距功能,如自适应巡航控制等,它并不是针对物体辨识而设计的。显然地,Metawave正致力于开发使用合成孔径雷达(SAR)的技术,这将为雷达提供对象辨识的能力。”

开启新业务模式

Metawave首席执行官Achour看好AI在其雷达应用的巨大前景。一旦雷达开始用其AI“大脑”在道路上收集资料并解读行驶的环境,Achour期望Metawave能为汽车产业提供可用的数据。“我们能提供基于程序代码的AI与算法搭配雷达作业所学习的成果,并从中赚取服务费。”

根据多项预测指出,在未来的第4/5级(Level 4/Level 5)自动驾驶阶段,汽车产业将不再依赖于车子的单位销售量,而将更着眼于每辆车的行驶里程数。在此情况下,Achour指出,硬件公司也必须改变其业务模式。提供由AI收集的情报作为服务,为Metawave带来新的商机。

车用模拟雷达将取代光达?

如果模拟雷达真的像Metawave所说的这么好,能够扩展其测距以及区别对象,那么Metawave的模拟雷达是否能完全取代光达?

Demler表示:“如果Metawave能够降低成本,或许就可能实现。”但他对于Metawave的雷达是否真的能超越光达的分辨率仍抱持怀疑的态度。

Freeman则认为现在预测还为时过早。他解释说,“每一种传感器都各有其优点和缺点。Metawave所做的是解决雷达的一些弱点,我认为它所用的方式确实能使其足够强大、分辨率够高,可能让汽车OEM用于设计完全不需要光达的全堆栈传感器系统。”然而,他也补充道:“目前所用的光达具有高质量且低成本,仍然更能有效地实现这任务。”

Achour的看法略有不同。她说:“一开始,所有的传感器都会被要求实现完全的自主性。随着AI引擎日趋成熟,数字地图变得更加可靠和精确,即使是在没有V2X通讯的情况下,雷达和摄影机就足以让汽车实现零事故的自动驾驶目标了。”

她指出:“有些人可能认为,实现精确定位绝对少不了光达。”然而,她以自身的经验表示,Metawave的模拟雷达(称为Warlord)支持强大的3D成像,并结合数字地图,“将足以提供精确的定位。我预计这将在2020年中期到2030年初实现。”

开发挑战

在开发全雷达封装时,Metawave也免不了面对挑战。Metawave工程副总裁Geroge Daniel指出,Metawave的雷达解决方案是专为作业于76-81GHz频段而设计的。

FCC藉由授权使用整个76-81GHz频段,为远距车辆雷达提供了一个连续的频谱区段。

这意味着Metawave的“超材料需要与离散组件互动”,这些组件最初是为早期的车用雷达系统设计的,采用整合的24GHz雷达传感器技术,作业于较低频段范围。

700万美元首轮融资

目前,Metawave的核心团队共有7名工程师,包括管理阶层。今年9月还从Khosla Ventures、Motus Ventures与Thyra Global Management等投资机构获得了700万美元的首轮种子融资。

那么,这家新创公司还需要多少资金呢?Achour表示:“也许再一轮筹资吧!”。她表示有信心“藉由Metawave的技术能够解决最根本的问题。”

除了计划在CES展示其车用雷达原型,Metawave还打算明年2月在西班牙巴塞罗那举行的世界行动通信大会(MWC)展示其针对5G网络所设计的智能波束成形天线。Achour解释,目前的MIMO架构无法在即将来临的5G时代支持较4G更高1,000倍的速度,而Metawave的智能波束成形解决方案可将能量导向特定的用户装置,提供优化在线体验所需的带宽。

Achour可不是超材料世界的新手。她曾经是超材料公司Rayspan的共同创办人兼首席技术官,这家公司大约在10年前就为手机打造了颇具发展前景的超材料天线,但最终因营运不佳而退场。

这是怎么一回事呢?Achour表示,Rayspan的业务模式是以授权为基础,设计天线和RF前端模块后授权给客户。然而,授权业务从来都不是一种适合硬件解决方案新创公司经营的业务模式,因为“新创公司获利的速度还不足以支撑产品销售几季后必须支付的营运费用。”她解释说:“这就是为什么Metawave与第三方制造伙伴共同打造全雷达传感器之故。”

那么Rayspan和Metawave所使用的超材料有什么不同吗?Achour说:“Rayspan的天线是被动天线,意味着其辐射场型是固定的。Metawave的天线则是主动的,由于其板载主动组件能让天线控制其波束成形与转向,因而更智慧。”

编译:Susan Hong

本文授权编译自EE Times,版权所有,谢绝转载

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Junko Yoshida
ASPENCORE全球联席总编辑,首席国际特派记者。曾任把口记者(beat reporter)和EE Times主编的Junko Yoshida现在把更多时间用来报道全球电子行业,尤其关注中国。 她的关注重点一直是新兴技术和商业模式,新一代消费电子产品往往诞生于此。 她现在正在增加对中国半导体制造商的报道,撰写关于晶圆厂和无晶圆厂制造商的规划。 此外,她还为EE Times的Designlines栏目提供汽车、物联网和无线/网络服务相关内容。 自1990年以来,她一直在为EE Times提供内容。
  • 晶圆级脉冲激光沉积将改变游戏规则 一项技术要想产生广泛的影响,它不仅要解决短期的挑战,还应该超越现有技术的进步,为未来的创新打开大门。这就是我们对泛林集团(Lam Research)今年早些时候推出的全球首个用于半导体量产的脉冲激光沉积(PLD)技术的描述。
  • 晶合集成与思特威首颗集成1.8亿像素全画幅CIS芯片成功试产 当今这个数字化时代,图像传感器技术的发展对于摄影、安防、医疗等多个领域的重要性不言而喻。近日,合肥晶合集成电路股份有限公司与国内设计公司思特威联合宣布,他们共同研发的首颗1.8亿像素全画幅(2.77英寸)CMOS图像传感器(CIS)已成功试产。
  • 面对欧盟效率和空载功耗两大新要求,BLDC设计怎么破? BLDC的应用持续增长,主要市场驱动力来自于以下几个方面:工业类电机应用节能指令提出了新要求;印度对于吊扇应用,致力于实现50%的节能目标;越来越多设备的终端客户,希望有更好的使用体验。
  • 马斯克:正与首位脑机芯片受试者讨论植入第二代芯片 据悉,Neuralink公司正在积极推进第二阶段的临床试验。该公司已获得美国FDA的批准,将在6月份对受试者进行芯片植入手术。
  • 苹果态度转变,将为Mac电脑提供触摸屏支持 苹果这种转变是由于市场需求和技术进步的双重推动。一方面,市场上有大量用户希望将iPad的功能与Mac结合起来,苹果最终决定满足这些用户的需求。另一方面,苹果公司内部已进行与Mac触摸屏相关的技术验证,主要集中在设计整合触控板、键盘和触摸屏的首版产品。
  • 清华大学研制出世界首款类脑互补视觉芯片“天眸芯”,赋能智能无人系统领域 该研究团队进一步研制出了世界首款类脑互补视觉芯片“天眸芯”,在极低的带宽(降低90%)和功耗代价下,实现了每秒10000帧的高速、10bit的高精度、130dB的高动态范围的视觉信息采集。它不仅突破了传统视觉感知范式的性能瓶颈,而且能够高效应对各种极端场景,确保系统的稳定性和安全性。
  • 全球折叠屏手机快速增长,中国品牌压 • 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
  • AI网络物理层底座: 大算力芯片先进 AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
  • 奕斯伟计算DPC 2024:发布RISAA(瑞 奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
  • 重磅发布:Canalys 2024年中国云渠道 2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
  • 全球第三!全球高端手机市场,华为猛涨80%,苹果坠落正拉开帷幕! 在全球智能手机竞争日益激烈的情况下,谁能在高端市场站稳脚跟,谁就占据了主动权。一直以来全球智能手机市场格局都是,苹果专吃高端,其他各大厂商分食全球中低端市场。但现在市场正在其变化。根据Canalys最
  • 路特斯的努力有多“韧性” 文|沪上阿YI路特斯如今处在一个什么样的地位?吉利控股集团高级副总裁、路特斯集团首席执行官冯擎峰一直有着清晰的认知:“这个品牌的挑战依然非常大。首先,整个中国市场豪华汽车整体数据下滑了30%~40%,
  • 发奖金,人均105万,1.2万人有份! ‍‍近期,IC 设计大厂联发科宣布了2024年上半年度的员工分红计划,与8月份薪资一起发放。据外界估算,按照上半年税前盈余约648.66亿新台币(约 144.42 亿元人民币)进行估算,此次分红总额接
  • 2.4亿美元!“果链”捷普科技在印度设厂! 周二,捷普科技(Jabil)官员与印度泰米尔纳德邦代表团在泰米尔纳德邦首席部长MK Stalin的见证下,签署了一份备忘录。MK Stalin正在美国进行为期17天的访问,旨在吸引新的投资。MK St
  • 大力拓展半导体行业-节卡复合机器人有何优势? 会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!逐个击破现有痛难点。文|新战略半导体行业高标准、灵
  • 【光电通信】特种光纤与光纤通信-236页收藏  今日光电      有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来----来源:通信大讲堂申明
  • 60%汽车供应商裁员! 疫情后的劳动力囤积和强有力的员工保护规则掩盖了德国高薪制造业工作市场令人担忧的变化。根据联邦劳工办公室的数据,欧元区最大经济体德国的失业率在2019年春季曾达到历史最低点4.9%,现已上升至6%。虽然
  • 骄成超声:引领超声波技术革新,助力碳化硅产业升级 8月28-30日,PCIM Asia 2024展在深圳举行。“行家说”进行了为期2天的探馆,合计报道了200+碳化硅相关参展企业(.点这里.)。其中,“行家说”还重点采访了骄成超声等十余家企业,深入了
  • 华为大突破! 在苹果和华为的新品发布会前夕,Counterpoint公布了2024年第一季度的操作系统详细数据,数据显示, 鸿蒙操作系统在2024年第一季度继续保持强劲增长态势,全球市场份额成功突破4%。在中国市场
  • 下线、投产...这3个电驱动项目传最新进展 近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了