广告

降压型开关电源的发展

2017-05-12 04:13:21 杨红伟 阅读:
电源作为电子产品的动力中枢,其续航能力直接决定着电子产品的使用寿命。随着集成电路制造工艺的不断进步,数字电路的电源电压一直下降,但系统的供电电源还是在较高的电位,因此必须靠降压型电源来提供较低的供电电源。
广告

电源作为电子产品的动力中枢,其续航能力直接决定着电子产品的使用寿命。随着集成电路制造工艺的不断进步,数字电路的电源电压一直下降,但系统的供电电源还是在较高的电位,因此必须靠降压型电源来提供较低的供电电源。开关电源技术问世之前,线性电源作为各类电子产品的主要电源,能够实现直流高电压向直流低电压的单向变换,适用于低压差的电压转换和低负载电流的应用。要提高电子产品的性能,节约能源,关键是要解决电源的性能问题。由于开关电源具有功耗小、变换效率高等优良性能,加上生产成本低,已经逐渐取代了线性电源,在电子行业得以广泛使用。

开关电源发展之初,功率级多采用分立器件,应用简单的异步整流技术,如图(1)所示。
20170512-switch-1
图(1)异步整流DCDC BUCK

同步整流技术采用MOSFET代替整流二极管,由于MOSFET的导通电阻很低,整流器件的导通损耗大大降低,提高了转换效率,同步整流技术尤其适宜应用在低电压、大电流的场合。同步整流BUCK如图(2)所示。
20170512-switch-2
图(2)同步整流DCDC BUCK

进入90年代中后期,随着集成电路的发展,MOS分立元件集成到芯片中,DCDC BUCK整体性能大幅提高,同时降低了成本,显示出强大的生命力。对于电流不是很大的BUCK, 功率级High Side MOS多采用PMOS,这样控制电路简单。而对于大电流BUCK,则改用经济的NMOS,NMOS的栅电压要通过自举电路抬高,如图(3)所示。
20170512-switch-3
图(3)带自举电路的同步整流DCDC BUCK

DCDC按控制环路可分为电压模式控制(图4)和电流模式控制(图5)。
20170512-switch-4
图(4)电压模式DCDC BUCK控制原理图
20170512-switch-5
图(5)电流模式DCDC BUCK控制原理图

电压控制模式系统结构简单,因其只有电压反馈一个环路,动态响应慢,存在双极点,补偿复杂。电流模式控制在保留电压控制模式的基础上,又增加了一个电流反馈环,即存在电压反馈外环和电流反馈内环的双环控制系统。电流模式控制闭环响应快,单极点系统易于补偿。但当占空比(D)大于50%时,易产生次谐波振荡,各种谐波补偿电路应运而生,弥补了不足,在很长一段时间,电流模式控制DCDC一直是电源的主流。

受到摩尔定律的指引,半导体制程的线宽不断缩小,智能手机、平板电脑和数码相机等市场上的便携式设备做得越来越轻薄,功能越来越强大。然而数码产品所需电源电压不断下降,电流不断增加,对电源性能的要求不断提高,传统PWM模式DCDC,已不能满足市场需要。

近些年,COT(Constant-On-Time)控制架构得以广泛应用。COT架构的DCDC具有几大优势:

1、控制电路简单,不需要误差放大器和电流采样电阻。

2、对负载的变化响应快速。

3、轻载时仍有较高效率。输出级电容的ESR(串联等效电阻)自带电感电流信息,只要其“信息”足够(所产生纹波可以和电容纹波比拟)就可以作为电流检测电阻使用,以实现只用输出电压就可以获得电流模式控制[1] [2] [3]。在输出电压纹波要求不高的应用中,可以在电容上叠加一个电阻去产生这样的纹波信号,如图(6)中的R3。
20170512-switch-6
图(6)COT应用电路

通常用具有较高ESR的电容(电解电容,固态电容(OSCON),高分子有机半导体固体电容器(POSCAP))来实现这种纹波。受严格的输出调整电压规格限制,以及成本和尺寸压缩的需要,电源设计者转向成本更低,尺寸更小,ESR更低的陶瓷电容(ceramic)[1]。使用带陶瓷电容的COT架构,就必须“造出”带有电感电流信息的幅度足够大的纹波,图(7)为纹波产生电路,产生的纹波可由公式(1)计算得出[1]。
20170512-switch-7
图(7)COT架构的DCDC BUCK纹波产生电路

公式(1):V_(CX(PP))=(I_(L(PP))×L)/(R_X×C_X )

与图(6)同一款芯片的另一种应用,如图(8)所示:为获得较小的输出纹波,不用R3,而用RA, CA产生了带有足够电感电流“信息”的纹波,加载在反馈电压信号上。
20170512-switch-8
图(8)采用纹波注入的最小纹波输出应用电路

思瑞浦研发的TPP2020 DCDC BUCK,采用COT技术,输入电压最高可达20V,输出电压5V到1V,输出电流可达3A,效率最高可达93%,其应用电路如图(9)所示。

20170512-switch-9
图(9)TPP2020应用电路

DCDC BUCK随着微电子技术的发展以及电子产品电源的需要而不断创新,从异步整流到同步整流,功率器件从片外分立MOS到片内集成大功率MOS,从单环电压模式到双环电流模式,从复杂环路和补偿电路到简单的COT架构(误差放大器,补偿电路,甚至振荡器都可以不要),从PWM到PFM操作……如今COT架构更是以其无以伦比的优势在电源领域得以大力发展。未来,还会有新的技术不断创造出来、融入进来,使我们的DCDC BUCK性能更加卓越…

参考文献

  1. Shangyang Xiao, “Ripple Generating Circuit for Constant-On-Time Controlled Buck Converters”, powerelectronics.com/regulators/ripple-generating-circuit-constant-time-controlled-buck-converters
  2. Kuang-Yao (Brian) Cheng, “Adaptive Ripple-Based Constant On-Time Control with Internal Ramp Compensations for Buck Converters”, p.440, 2014, IEEE
  3. Shuilin Tian, “Small-signal Model Analysis and Design of Constanton-time V2 Control for Low-ESR Caps with ExternalRamp Compensation”, p.2944, 2011,IEEE

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 项目动态|长飞先进武汉基地首批设备搬入 今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
  • 被神秘的FS7“附体”,解读两大最新功率模块系列的“超能力” 点击蓝字 关注我们安森美(onsemi)在2024年先后推出两款超强功率半导体模块新贵,IGBT模块系列——SPM31 IPM,QDual 3。值得注意的是,背后都提到采用了最新的FS7技术,主要性能
  • 雷曼光电与辰显光电签约,推进MicroLED商业化 ‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
  • 94岁巴菲特公布后事安排!1500亿美元遗产,只留0.5%给子女? 投资界传奇人物沃伦·巴菲特,一位94岁的亿万富翁,最近公开了他的遗嘱。其中透露了一个惊人的决定:他计划将自己99.5%的巨额财富捐赠给慈善机构,而只将0.5%留给自己的子女。这引起了大众对于巴菲特家庭
  • iPhone17系列迎六年来首次设计大换代:回归铝合金背板 有博主基于曝光的信息绘制了iPhone 17系列渲染图,对比iPhone 16系列,17系列最大变化是采用横置相机模组,背部DECO为条形跑道设计,神似谷歌Pixel 9系列,这是iPhone六年来的
  • 华为Pura80细节曝光:麒麟9020跑分能上130万分 对于华为来说,今年的重磅机型都已经发完了,而明年的机型已经在研发中,Pura 80就是期待很高的一款。有博主爆料称,华为Pura 80将会用上了豪威OV50K传感器,同时电池容量达到5600毫安时。至
  • 跟着撒贝宁走进维信诺,探寻“非凡中国屏”诞生背后的科技传奇之旅 万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
  • 柔宇显示资产降价拍卖 阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
  • 注意些问题,嵌入式软件代码可大幅度减少bug 扫描关注一起学嵌入式,一起学习,一起成长在嵌入式开发软件中查找和消除潜在的错误是一项艰巨的任务。通常需要英勇的努力和昂贵的工具才能从观察到的崩溃,死机或其他计划外的运行时行为追溯到根本原因。在最坏的情
  • 巨头疲软行业内卷,极越为谁而“亡”? 在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了