广告

皮肤阻抗分析优化主动和被动给药

时间:2017-04-14 11:04:49 作者:Liam Riordan 阅读:
皮肤阻抗是透皮给药的一个关键变量。该阻抗十分复杂,依年龄、种族、体重、运动水平和其它因素而有所不同,并与频率有关,难以模拟。动态测量皮肤阻抗为实现最佳给药提供了一种准确而实用的解决方案。
广告

给药是药物行业发展最快的领域之一,各大制药公司都在积极开发替代注射的给药方式。口服、外用、吸入式、纳米技术和透皮给药系统等都是目前的热门研究领域。透皮给药是一种透过病人皮肤的无创输送药物方法,药物通过两种途径穿透皮肤保护层:被动吸收或主动渗透。

透皮贴片是最常见的被动给药方法之一。它贴在病人的皮肤上,可安全舒适地将一定剂量的药物在一定的时间内输送给病人。药物通过皮肤吸收进入血液。尼古丁贴片是最典型的例子,其它常见应用包括晕车药、激素替代疗法和节育避孕。被动给药的缺点主要有两个:一是药物吸收的速度取决于皮肤阻抗,二是只有少数药物能够以合理的速率渗透皮肤保护层。因此,大量研究都集中在主动透皮给药。主动方法包括:利用超声能量加速药物扩散,利用RF能量建立穿过角质层(表皮外层)的微通道,以及离子渗透法。

ADI17041401
图1. 离子渗透法

离子渗透法利用电荷使药物主动穿透皮肤进入血液。该装置由含有带电药物分子的两个腔室组成。带正电荷的阳极排斥带正电荷的化学物质,带负电荷的阴极排斥带负电荷的化学物质。两个腔室之间形成的电磁场使药物以受控方式主动穿透皮肤。

皮肤阻抗是透皮给药的一个关键变量。该阻抗十分复杂,依年龄、种族、体重、运动水平和其它因素而有所不同,并与频率有关,难以模拟。动态测量皮肤阻抗为实现最佳给药提供了一种准确而实用的解决方案。

可以利用电阻、电容和电感阻抗随频率而发生不同变化的情况,借助阻抗频谱准确分析人体皮肤等复杂阻抗。当频率提高时,电阻的阻抗保持不变,电容的阻抗减小,电感的阻抗则增大。用已知交流波形激励一个测试阻抗可以确定未知阻抗的阻性、容性和感性成分。 直接数字频率合成器 (DDS) 具有灵活的相位、频率、幅度、扫描能力和可编程能力,非常适合用于激励未知阻抗。嵌入式数字信号处理和增强的频率控制,使这些器件能够产生合成的模拟或数字频率步进波形。图2显示了一个简单阻抗分析仪的框图。完整 的低功耗、75 MHz DDS AD9834 产生交流波形,高速轨到轨运算放 大器AD8091对其进行滤波、缓冲和放大。另一个 AD8091 缓冲响应 信号,并将其放大以匹配12位、1 MSPS逐次逼近型ADC AD7476A 的输入范围。

ADI17041402
图2. 简单阻抗分析仪

不过,在这一简单信号链的背后,隐藏着一些挑战。首先,ADC必须在频率范围内对激励和响应波形进行同步采样,以便维持相位信息。优 化这一过程对于整体性能至关重要。此外,其中涉及到许多分立元件,各种不同的容差、温度漂移和噪声将使测量精度下降,特别是处 理小信号时。

AD5933 12位、1 MSPS集成阻抗转换器网络分析仪将DDS波形发生器 和SAR ADC集成在单芯片上,可解决上述难题,如图3所示。

ADI17041403
图3. AD5933功能框图

AD5933的输出阻抗为数百欧姆,具体取决于输出范围。该阻抗可能 会覆盖未知阻抗,因此使用运算放大器 AD8531 来缓冲信号,如图4所示。请注意,AD5933的接收端内部偏置到VDD/2,因此必须将该同一 电压施加于外部放大器的同相端,以防发生饱和。出于安全起见,所有激励电压和电流在施加于人体组织之前,都需要经过信号调理、衰减和滤波。

ADI17041404
图4. 低阻抗测量配置

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 笛思科技:从无线通信到边缘推理算力的创新之路 无线通讯最大的愿景,是用一张网覆盖整个人类社会,这对整个社会来讲是最经济、效率最高并且成本最低的方式。
  • 新型薄膜半导体问世,电子迁移速度是传统硅半导体7倍 美国麻省理工学院和加拿大渥太华大学的科学家们联合研发出一种新型超薄晶体薄膜半导体,其电子迁移速度达到传统半导体的7倍,为电子设备性能的飞跃提供了可能。
  • 面对欧盟效率和空载功耗两大新要求,BLDC设计怎么破? BLDC的应用持续增长,主要市场驱动力来自于以下几个方面:工业类电机应用节能指令提出了新要求;印度对于吊扇应用,致力于实现50%的节能目标;越来越多设备的终端客户,希望有更好的使用体验。
  • 天津诺思与安华高9年专利纠纷终告和解 7月3日,天津诺思在其官方公众号“诺思微系统”发布重大声明称,公司与安华高已就双方全部争议达成和解。同时撤回并终结了所有针对对方及其关联公司和客户的诉讼,并就某些中国专利达成交叉许可。
  • 星曜半导体完成10亿元B轮融资,创国内射频前端赛道最大单轮融资记录 移动通信中常用的射频滤波器可分为声表面波(SAW )滤波器 和体声波(BAW )滤波器。星曜半导体专注的TF-SAW是一种什么滤波器?与其他类型的滤波器相比,TF-SAW滤波器的特点是什么?
  • 西门子将35亿欧元出售Innotics电机驱动部门 西门子董事会已批准该项收购,该交易预计将于2025财年上半年完成,这是西门子重组其投资组合的最新举措。
  • 全球折叠屏手机快速增长,中国品牌压 • 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
  • AI网络物理层底座: 大算力芯片先进 AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
  • 奕斯伟计算DPC 2024:发布RISAA(瑞 奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
  • 重磅发布:Canalys 2024年中国云渠道 2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
  • 又一芯片大厂终止研发! ‍‍Mobileye 将终止内部激光雷达开发Mobileye 宣布终止用于自动驾驶的激光雷达的开发,并裁员 100 人。Mobileye 认为,下一代 FMCW 激光雷达对可脱眼的自动驾驶来说必要性没
  • 2.4亿美元!“果链”捷普科技在印度设厂! 周二,捷普科技(Jabil)官员与印度泰米尔纳德邦代表团在泰米尔纳德邦首席部长MK Stalin的见证下,签署了一份备忘录。MK Stalin正在美国进行为期17天的访问,旨在吸引新的投资。MK St
  • 《黑神话:悟空》下的科技众生相 刚刚过去的8月,《黑神话:悟空》把国产游戏的热度推上了史无前例的高度。根据VG Insights的数据显示,《黑神话:悟空》总销量已经达到1690万份,面对这泼天的流量,各类厂商也坚决不能放过。但凡跟
  • 日本信越化学12英寸氮化镓衬底出样 第三代半导体材料氮化镓,传来新消息:日本半导体材料大厂信越化学为氮化镓外延生长带来了有力辅助。2024年9月3日,信越化学宣布研制出一种用于GaN(氮化镓)外延生长的300毫米(12英寸)QSTTM衬
  • 2032年单晶硅市场营收将增至201亿美元! 据市场调查机构Allied Market Research的《单晶硅晶圆市场》报告指出,2022年单晶硅晶圆市场价值为109亿美元,预计到2032年将达到201亿美元,2023年~2032年的复合年均
  • 【光电通信】特种光纤与光纤通信-236页收藏  今日光电      有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来----来源:通信大讲堂申明
  • 突发!三星印度厂工人大规模罢工! 9月11日消息,根据外国媒体报道,位于印度清奈的Sriperumbudur工厂三星电子工厂的员工发起了无限期罢工,要求提高工资并改善工作时间。此次罢工涉及大约2000名工人,导致工厂的日产量大约减少了
  • 活动邀请|华强电子产业研究所诚邀您莅临2024深圳跨境电商展览会 展位信息深圳跨境电商展览会(CCBEC)时间:2024年9月11-13日 9:30-17:30地点:深圳国际会展中心(宝安)展馆:16号馆 16D73/16D75 展位报名注册准备好“观众注册”入场二
  • 【今日分享】世有伯乐,然后有千里马,谢谢您,我的导师…  今日光电      有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来---- 鹤发银丝映日月,丹
  • 下线、投产...这3个电驱动项目传最新进展 近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了