广告

测试压接连接器的大难题被NASA解决了

2017-03-15 09:34:00 Bill Schweber 阅读:
被广泛应用的基本压接连结,现在可以采用NASA开发的非破坏性超音波系统进行测试。
广告

缆线以及连接器都是最容易也最难测试的对象,而且通常是得同时进行;一个处理RF、特别是几十GHz信号的互连组件,测试起来会很棘手…为什么?因为所有东西都会影响性能,包括设定、测试仪器与设定、材质、尺寸精度、弯曲、操作方式等等因素都会影响测试性能。

还有另一种常见的连结方案应该比较容易检测,也就是广泛应用的压接连结(crimp);原则上这种连结非常直接,因为连接器是用手动或是电动辅助的压着钳(crimper)挤压到线路上,线路与连接器是以塑料(plastic)模式变形并紧密结合成一对,因此在电气与机械上应该都很坚固。如果制作正确,压接式互连的阻抗低、可靠,而且会有成本相当低的附加优点。

市面上有很多种类的压接连接器,包括叉型与环形端子(如下图);但是根据笔者同事,EE Times/EDN资深技术编辑Martin Rowe的经验,不良的压接连接器会导致发热甚至起火。

20170314 crimp NT03P1
市面上有很多形状与尺寸的压接连接器,可满足不同应用需求 (图片来源:miketrask.com)

矛盾的是,虽然压接连结是肉眼完全可见,却很难检测;很多因素会导致错误,例如未均匀施加的压接力道、线路未对齐、压力太大(可能导致固态或标准线路出现微小的裂痕)、压力太小(通常会导致因振动而连接时断时续)…等等。

以拆解或是拉断测试(pull-to-failure test)等方式来检测压接链接的质量并不恰当,因为需要破坏连结本身;拆解只能用在样品随机测试或是用以验证设定。那么,该如何用快速又不具破坏性的方法来测试这些连结?它们都是系统的重要链接接口,可靠度是非常重要的。

为解决这个问题,美国太空总署(NASA)旗下的Langley研究中心提出的方案是用一种实时性超音波设备(如下图),以先进的信号分析来判断链接是否通过测试;该系统(现在可提供授权)是在制作压接连结时将一道声波传送进去。

20170314 crimp NT03P2
NASA开发了一种测试压接连接器质量的工具(图片来源:NASA)

根据NASA提供的资料,随着施加的压力提高以及压接连结端点绕着线路变形,穿过链接的超音波波形也会跟着改变;该系统能分析信号的变化,包括振幅以及频率等内容,以做为判断线路与连结端子之电气与机械链接质量的指针(如下图)。
20170314 crimp NT03P3
用超音波信号波形可轻松判断压接链接的质量(图片来源:NASA)

NASA指出,不同的压接链接质量问题,例如压接力道不足、线股遗漏、线路插入不完整、绝缘部分脱落,以及线路规格不正确等,都能用这种方法被测试出来。

这种精密且显然有效的压接连结测试方法不只容易使用,而且是能在连结制作过程中进行,不是等到制作完成之后才测试;如果压接连结有任何问题,操作者就能在必须以更具破坏性方法解决之前马上停止动作、找出错误。如果连结通过测试,线路就能立即连到端点上,免除随后处理缆线(通常是在庞大的线束中)的需要。

该超音波分析方法并非根据单一数字或是单一组数字,而是以累计数据来定义测试是否过关;举例来说,其中一种方法是在压接过程中量测施加于压接连结一个或多个特定点之压力,这其实是评估压接过程中的次要部分,而非透过超音波波形看到压接连结实际完整度。

笔者猜想,当我们收集更多资料,就有能力做出尺寸更小、成本更低的量测设备(例如超音波收发器),以及开发智能算法,催生更多这类测试方案。在很多情况下,只量测单一数字可能是不够的,我们现在也有更多可以使用的强大工具。

你曾经做过这类精密但简单的测试吗?或者是有哪些测试案例是你希望也有像这种方法可以提供支持的?欢迎讨论!

编译:Judith Cheng

本文授权编译自EE Times,版权所有,谢绝转载

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Bill Schweber
EE Times/EDN/Planet Analog资深技术编辑。Bill Schweber是一名电子工程师,他撰写了三本关于电子通信系统的教科书,以及数百篇技术文章、意见专栏和产品功能介绍。在过去的职业生涯中,他曾担任多个EE Times子网站的网站管理者以及EDN执行编辑和模拟技术编辑。他在ADI公司负责营销传播工作,因此他在技术公关职能的两个方面都很有经验,既能向媒体展示公司产品、故事和信息,也能作为这些信息的接收者。在担任ADI的marcom职位之前,Bill曾是一名备受尊敬的技术期刊副主编,并曾在其产品营销和应用工程团队工作。在担任这些职务之前,他曾在英斯特朗公司(Instron Corp., )实操模拟和电源电路设计以及用于材料测试机器控制的系统集成。他拥有哥伦比亚大学电子工程学士学位和马萨诸塞大学电子工程硕士学位,是注册专业工程师,并持有高级业余无线电执照。他还在计划编写和介绍了各种工程主题的在线课程,包括MOSFET基础知识,ADC选择和驱动LED。
  • 宇树推出人形机器人首个应用方案 “为赛事打造的足球巨星”文|网络1月22日,宇树科技在官网更新了G1人形机器人首个应用方案——UnitreeG1-Comp,该机器人被官方称为“为赛事打造的足球巨星”。G1-Comp不仅能在足球场上奔
  • Aigtek:功率放大器在驱动压电陶瓷中的应用   随着科学技术的发展,压电陶瓷在各个领域中扮演着重要的角色。作为一种能够转换电能和机械能的材料,压电陶瓷广泛应用于声波和超声波设备、传感器、驱动器等领域。其中,压电陶瓷驱动器是实
  • 【光电通信】光纤接头类型大全(动态多图)! 今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----光纤连接器是通用的无源器
  • NordicnPM2100发布:首款原电池PMIC,让蓝牙低功耗产品续航更长久 官方发布低功耗无线连接解决方案的全球领导者 Nordic Semiconductor 今天宣布,其 nPM 电源管理集成电路 (PMIC) 系列再添新成员。nPM2100 PMIC 通过使用超高效升压
  • 微软被特朗普的AI计划排挤了? 星际之门AI计划中,OpenAI、软银、甲骨文联合出资,微软、英伟达、Arm则仅作为技术合作伙伴。作者 | 马兰特朗普周二宣布的星际之门AI计划,催动美股科技业再次狂欢。然而不少投资人疑惑发问:微软这
  • 字节的AGI计划,瞄准这五大方向! Seed Edge初步确定了五大研究方向,包括探索推理能力的边界、探索感知能力的边界、探索软硬一体的下一代模型设计、探索下一代AI学习范式、探索下一个scaling方向。作者 | 张洋洋字节跳动AGI
  • 【今日分享】前沿进展|新型薄膜铌酸锂混合集成微环声光调制器的诞生 今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----高效的声光调制在微波到光
  • “芯”二代寒假现状:我和爸爸在新思科技玩芯片 新思科技2025青少年芯片创新冬令营顺利结营!我们有幸邀请到来自广大合作伙伴和芯片设计公司的开发者们,携“芯”二代深度参与,共同开启一场探索数字世界的芯片创新之旅。活动后我们采访了一位初中二年级的“芯
  • 超500项、26亿元-2024年AGV/AMR领域中标项目一览 亿元级别项目4个,千万级项目40个,百万级项目175个。文|新战略根据公开信息,新战略移动机器人全媒体不完全统计,2024年,国内共计发布超500项中标公告,披露总金额超26.7亿元(部分项目未披露具
  • Aigtek电压放大器都被用在哪些领域   电压放大器是电子电路中一种重要的器件,其主要功能是将输入电压信号放大到更高的电压水平,通常用来增强信号的幅度和功率。电压放大器在各种领域都有广泛的应用,包括通信、音频、医疗、工
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了