广告

汽车电源的监视和控制

时间:2017-02-21 14:50:00 作者:Pinkesh Sachdev 阅读:
在如今的汽车中,为了提高舒适度和行车体验而设计了座椅加热、空调、导航、信息娱乐、行车安全等系统,从这些系统很容易理解在车中为各种功能供电的电子系统的好处。
广告

现在我们很难想像仅仅 100 多年以前的景象,那时,在汽油动力汽车中,一个电子组件都没有。在世纪交替时期的汽车开始有了手摇曲柄,前灯开始用乙炔气照明,也可以用铃声向行人发出提示信息了。如今的汽车正处于彻底变成电子系统的交界点,最大限度减少了机械系统的采用,正在成为人们生活中最大、最昂贵的“数字化工具”。由于可用性和环保原因,以及提高内燃型、混合动力型和全电动型汽车行车安全的需求,市场逐步减少了对汽油的依赖,这正是“数字化”转变的驱动力。

随着越来越多的机械系统被电子系统取代,功耗以及怎样监视功耗变得越来越重要了。准确监视电动型汽车的功耗最终会让司机心里更踏实。任何人只要驾驶了全电动型汽车,都有可能担心行车距离问题,因为到达目的地之前,汽车电池电量可能耗尽的问题无时不在。混合电动型汽车车主有依靠汽油动力引擎行驶回家的优势,而电动型汽车只能在充电站充电,眼下充电站稀少,而且需要几个小时,电池才能充好电。因此连续、准确地监视每个电子子系统的功耗是很重要的。基于监视所得的信息,还可以建议正在路上行驶的司机,节省电池电量以延长行驶距离。断开空闲模块与电源总线的连接可以进一步节省功耗。监视子系统的电流和功率,还可以揭示有关车辆长期性能的任何异常趋势,预测故障以防故障发生,标出需要发送给汽车修理店的服务请求。诊断系统也可以从功率和能量监视中受益,通过故障记录和无线数据访问,可以快速调试,并减少修理费用和宕机时间。

监视和控制功耗的几种方法

要监视电子系统的功耗,就需要连续测量电流和电压。电压可以直接用模数转换器 (ADC) 测量。如果 ADC 输入范围小于所监视的电压,那么也许需要一个电阻分压器 (图 1)。为了测量电流,需要在电源通路中放置一个检测电阻器,再测量其压降。如图 1 所示,跨导放大器将高压侧检测电压转换成电流输出,该电流流经增益设定电阻器,以产生一个以地为基准并与负载电流成比例以及适合馈送给 ADC 的电压。为了最大限度降低功耗,全标度检测电压限制为几十毫伏。因此,放大器输入失调需要低于 100µV。为了计算功率,必须使用通过 ADC 数字接口访问 ADC 数据的微控制器或处理器,以实现电压读数和电流读数相乘。要监视能耗,需要在一定时间内累计 (相加) 功率读数。

Lin17022101
图 1:测量电源轨上的输入电压和负载电流 (检测电压)

为了开关电源,一般在汽车电路中会使用机电继电器。为了节省空间,会用 N 沟道和 P 沟道 MOSFET 等固态开关取代继电器,从而产生所有组件都在同一块电路板上、可以统一采用再流焊工艺组装的 PCB 设计。P 沟道 MOSFET 通过拉低其栅极电平而接通,通过将栅极连接至输入电压而断开。与 N 沟道 MOSFET 相比,P 沟道 MOSFET 在导通电阻相同时成本更高,而且其选择范围很窄,限于较大电流值 (高于 10A) 情况。N 沟道 MOSFET 是应对大电流的最佳选择,但是需要充电泵,以提高栅极电压,使其高于输入电压。例如,12V 输入需要 22V 栅极电压,即 MOSFET 栅极要高出输入 10V。图 2 显示了一个电源开关电路的实现。

Lin17022102
图 2:用N沟道MOSFET实现电源轨的接通/断开

常见的电源总线也需要针对短路和过载故障提供保护,这类故障可能在任何板卡或模块中出现。为了实现电路断路器功能,可以比较图 1 中放大器的输出和一个过流门限,以断开图 2 中的栅极驱动器。这种方案取代了保险丝,因为保险丝反应速度慢、容限太宽且熔断后需要更换。为了节省电路板空间,人们希望在开关、保护和监视汽车电源总线中的功率流动时,采用集成式解决方案。

集成式电源控制与遥测解决方案

LTC4282 是一款可热插拔的控制器和电路断路器,提供能量遥测功能和 EEPROM (图 3),凭借创新性双电流通路特色,满足了大电流应用的需求。该控制器通过控制外部 N 沟道 MOSFET,可平滑地给大容量电容器加电,从而避免出现输入电源干扰以及电流达到破坏性水平,因此可确保电源在 2.9V 至 33V 范围内安全接通和断开。LTC4282 位于通往电路板电源的入口,其准确度为 0.7% 的 12 位或 16 位 ADC 通过一个 I2C/SMBus 数字接口报告电路板电压、电流、功率和能耗。内部 EEPROM 为寄存器设置和故障记录数据提供非易失性存储,从而可在开发过程中及现场运行时,加速调试和故障分析。

Lin17022103
图3:具功率/能量遥测功能和EEPROM的LTC4282电路断路器

LTC4282具准确度为2%的电流限制电路断路器,最大限度减少了过流设计,这在大功率时更加重要。在出现过流情况时,LTC4282折返电流限制,以在可调超时时间内保持恒定MOSFET功耗。定时器到了定时时间后,电路断路器断开故障模块和公用电源总线的连接。空闲模块也可以断开与电源总线的连接以节省功率。能够以数字方式配置的电路断路器门限允许随负载变化进行动态调节,方便了小电阻值检测电阻器的选择。所监视电气参数的最小值和最大值都记录下来,当超过8位可调门限时,就发出警示信号。为了防止给电路板造成灾难性损坏,这些MOSFET受到连续监视,以发现异常情况,例如低栅极电压和漏-源短路或大的压差。

SOA共享路径

虽然 LTC4282控制单个电源,可是它为负载电流提供了两条平行的电流限制路径。采用传统单路控制器的大电流电路板使用多个并联的MOSFET以降低导通电阻,但是所有这些MOSFET 都需要具有大的安全工作区(SOA)以安然承受过流故障,这是因为不能假设并联的MOSFET在电流限制期间分担电流。另外,MOSFET的选择范围在较高的电流水平上变窄,价格走高,而且SOA 的水平跟不上RDS(ON) 的下降。通过把电流分离到两条精准匹配的电流限制路径之中,LTC4282可确保两组MOSFET即使在过载情况下也将均分电流。对于100A应用,每条路径的设计电流限值为50A,因而把SOA要求减低了一半,拓宽了MOSFET的选择范围,并降低了其成本。这被称为一种 “匹配” 或 “并联” 配置,因为两条路径是采用相似的MOSFET和检测电阻器设计的。

此外,LTC4282的双电流路径还用于使MOSFET SOA要求与导通电阻脱钩。大的SOA对于启动浪涌、电流限制和输入电压阶跃等具有巨大应力的情况是很重要的。当MOSFET栅极完全接通时,低的导通电阻可降低正常操作期间的电压降和功率损耗。不过,这些是存在冲突的要求,因为 MOSFET SOA 通常随着导通电阻的改善而变差。LTC4282 允许采用一条具有一个能处理应力情况之 MOSFET 的路径,和另一条具有低导通电阻 MOSFET 的路径。这被称为一种分级起动配置。一般来说,在启动、电流限制和输入电压阶跃期间应力处理路径接通,而RDS(ON)路径则保持关断。RDS(ON)路径在正常操作过程中接通以旁路应力路径,为负载电流提供一条低导通电阻路径,从而减少电压降和功率损耗。视启动时MOSFET应力大小的不同,有两种分级起动配置,即低应力(图4) 和高应力。高应力分级起动配置推荐用于 50A以下的应用电流水平,而并联和低应力分级起动配置则推荐用于50A以上的应用。与单路径设计相比,最低的MOSFET成本由低应力分级起动配置提供,代价是在瞬变情况下不间断运行的能力受限,而且不能利用负载电流完成启动。并联和高应力分级起动配置可启动一个负载并提供计时周期较长的故障定时器,可在持续时间较长的过载条件和输入电压阶跃情况下不间断地运行。

Lin17022104a
图4a:低应力分级起动配置可为大于50A的应用提供最低的成本

Lin17022104b
图4b:利用低应力分级起动配置实现启动:GATE1首先接通以对输出进行涓流充电 (具有一个 2A 的低浪涌电流水平)。GATE2在SOURCE(输出)变至高于电源良好门限时接通。

结论

在过去20年,在动力转向、ABS刹车、便利性、行车安全、娱乐等功能的驱动下,汽车中采用的电子系统一直在快速增加。随着汽车向全面互联和完全自主行驶的方向发展,电子系统的增加还会加速,这增大了对珍贵的电池功率的需求。仔细的功耗监视加上关闭空闲系统有望提高电池使用效率。通过提供电路板级电气数据,LTC4282 电路断路器减轻了测量每个子系统的功率和能耗的负担,因此减轻了整个车辆功率和能耗的测量负担。凭借其新颖和能够以多种方式配置的双电流通路,LTC4282极大地方便了大电流千瓦级电路板的设计,允许在同一设计中既提供很大的SOA,又提供很小的导通电阻。

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 英飞凌全球最大8英寸SiC工厂启动运营,竞争门槛再度升级 英飞凌日前宣布其位于马来西亚的新晶圆厂一期项目正式启动运营,将重点生产碳化硅功率半导体,并涵盖氮化镓外延的生产。二期项目建成投产后,有望成为全球规模最大且最高效的200毫米碳化硅功率半导体晶圆厂。
  • 英诺赛科回应英飞凌的专利侵权指控 英诺赛科对英飞凌提起的专利侵权指控做出回应,强调自身在氮化镓领域的全球领先地位和自主知识产权,认为对方的诉讼是竞争手段。
  • 英飞凌对英诺赛科发起337调查,寻求永久禁令 英飞凌科技对英诺赛科发起了337调查申请,指控英诺赛科侵犯了其多项专利权,并寻求在美国市场永久禁止进口和销售英诺赛科的相关产品。
  • 香港正建设首条第三代半导体氮化镓外延片中试线 伴随香港第三代半导体氮化镓GaN外延片中试线的启动,香港科技园公司与麻省光子技术的合作标志着香港在微电子产业和新型工业化道路上的重要进展。这一视觉呈现象征着香港在半导体领域的雄心与未来潜力,展现了科技创新与产业升级的愿景。
  • 斥资2亿美元,安世半导体将在德国工厂生产SiC和GaN 为了满足对高效功率半导体日益增长的长期需求,近日,安世半导体宣布计划在德国汉堡市(Hamburg)投资 2 亿美元(约 1.84 亿欧元)研发碳化硅 (SiC) 和氮化镓 (GaN) 等下一代宽禁带半导体(WBG),并在汉堡工厂建立生产基础设施,同时,还将提高硅(Si)二极管和晶体管的晶圆厂产能。公告表示,从2024年6月起,安世半导体的SiC、GaN和Si这三种技术都将在德国开发和生产。
  • PI收购Odyssey强化技术路线图,推动GaN挑战SiC 美国垂直GaN晶体管技术开发商奥德赛半导体已经确定最终买主,Odyssey SEMI在今年3月宣布出售公司资产,5月7日,Power Integrations发布公告称,“该交易预计将于 2024 年 7 月完成,之后 Odyssey 的所有主要员工预计将加入 Power Integrations 的技术组织。”
  • 全球折叠屏手机快速增长,中国品牌压 • 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
  • AI网络物理层底座: 大算力芯片先进 AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
  • 奕斯伟计算DPC 2024:发布RISAA(瑞 奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
  • 重磅发布:Canalys 2024年中国云渠道 2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
  • 路特斯的努力有多“韧性” 文|沪上阿YI路特斯如今处在一个什么样的地位?吉利控股集团高级副总裁、路特斯集团首席执行官冯擎峰一直有着清晰的认知:“这个品牌的挑战依然非常大。首先,整个中国市场豪华汽车整体数据下滑了30%~40%,
  • 又一芯片大厂终止研发! ‍‍Mobileye 将终止内部激光雷达开发Mobileye 宣布终止用于自动驾驶的激光雷达的开发,并裁员 100 人。Mobileye 认为,下一代 FMCW 激光雷达对可脱眼的自动驾驶来说必要性没
  • 协作机器人鼻祖进军移动机器人,势要东山再起? 会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!再度出现,能否再次“出线”?文|覃洁兰近日,曾经在
  • 大力拓展半导体行业-节卡复合机器人有何优势? 会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!逐个击破现有痛难点。文|新战略半导体行业高标准、灵
  • 【光电通信】特种光纤与光纤通信-236页收藏  今日光电      有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来----来源:通信大讲堂申明
  • 又一上市半导体关厂,400名员工失业 ‍‍‍‍上市PCB厂商竞国(6108)日前出售泰国厂给予陆资厂胜宏科技后,近日惊传台湾厂惊传12月前关厂,并对客户发布通知预告客户转移生產,最后出货日期2024年12月25日。至於后续台湾厂400名员
  • 上半年SiC汽车中国销售近110万辆,供应商有哪些? 近日A股上市公司陆续完成2024年上半年业绩披露,其中24家SiC概念股上半年合计营收同比增长14.58%至1148.65亿元,研发费用同步增长7.22%至69.16亿元。尤为值得注意的是,天岳先进、
  • 总投资12亿元!这一IGBT项目明年投产 [关注“行家说动力总成”,快速掌握产业最新动态]9月6日,据“内江新区”消息,晶益通(四川)半导体科技有限公司旗下IGBT模块材料和封测模组产业园项目已完成建设总进度的40%,预计在明年5月建成。据了
  • 活动邀请|华强电子产业研究所诚邀您莅临2024深圳跨境电商展览会 展位信息深圳跨境电商展览会(CCBEC)时间:2024年9月11-13日 9:30-17:30地点:深圳国际会展中心(宝安)展馆:16号馆 16D73/16D75 展位报名注册准备好“观众注册”入场二
  • 下线、投产...这3个电驱动项目传最新进展 近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了