广告

能给人类安全感和便利性,才是好的人形机器人

时间:2017-02-07 10:00:00 作者:Steve Taranovich 阅读:
MIT所打造的人形机器人系统不只能在危险的环境运作,能负担繁重的任务,此设计最重要的影响是由现代汽车(Hyundai Motor Company)研究员Dong Jin Hyun衍生设计出的可穿戴式外骨骼。
广告

一年一度的国际消费性电子展(CES)在1月初于美国拉斯韦加斯举行,在展出的众多五花八门的消费性电子设备中,笔者偏好寻找能对这个世界带来一些重要影响的电子技术;CES第一天,我首先注意到的就是韩国现代汽车(Hyundai Motor Company)展示的可穿戴外骨骼机器人(wearable robotic exoskeleton),由该公司的资深研究员Dong Jin Hyun讲解。
advanced-wearable-robots
现场视频地址:https://www.youtube.com/watch?v=GiNgJddk4uU

可穿戴外骨骼机器人技术的研发始于美国麻省理工学院(MIT)的“高效益机器人架构与电机系统(highly efficient robotic mechanisms and electromechanical system,HERMES)”,是MIT仿生机器人实验室(Biomimetic Robotics Lab)旗下的研究项目;该实验室提出了一个概念、着手设计,最后打造了可远程操控的全身人形机器人原型。

MIT所打造的人形机器人系统不只能在危险的环境运作,能负担繁重的任务,此设计最重要的影响是由Dong Jin Hyun衍生设计出的可穿戴式外骨骼。

让HERMES与人形机器人动作平衡

设计工程师一直在尝试让机器人的运动发挥到极限──也就是说让机器人的动态行为动作就跟人类一样。我们身为人类,能透过大脑思考来适应不寻常、未预期的状况,让我们能在问题解决方面非常有创造力;透过在机器人身上布署某种形式的人工智能以及运动技巧,就可能让机器人能进入高度危险、可能致命的环境执行任务,以保障现场工作人员的生命安全。

藉由采用发散运动分量(divergent component of motion,DCM),操作员与机器人能透过质心(center of mass,CoM)与压力中心(center of pressure,CoP)的动力达成平衡同步化;我们人类能透过几个关节协调复杂的动作,并同步协调动作的优美与顺畅,而研究人员也希望打造出能完全模仿人类流畅动作的机器人。

能达成以上目标的方法之一,是透过全身远程操作(whole-body teleoperation)来撷取、模仿人类的动作。
EDNT1702 Pulse P2
*MIT研发的机器人系统HERMES,是一种能执行复杂动态操作任务的人形机器人设计。
(来源:参考数据1)*

远程的机器人操作员需要能与机器人的身体与感官合为一体,也就是说能感觉到机器人的力量以及受到的干扰,并因此能导引机器人成功执行任务、就像操作员自己在现场一样。MEMS传感器应该在这种设计中扮演了重要角色,现在加速度计与陀螺仪已经能有效被运用于这类人形机器人系统的运作与感测。

惯性量测单元(IMU)以及传感器中枢,能实现机器人的精确控制、自动化以及定位(positioning);如ADI的EVAL-ADIS2评估系统能协助加速产品上市,Bosch Sensortec也有可搭配其智慧中枢(Smart Hubs)以及专用传感器节点(ASSN)的优异传感器中枢软件。
EDNT1702 Pulse P3
*Bosch Sensortec的MEMS传感器解决方案阵容坚强。
(来源:Bosch Sensortec)*

客制化IMU设计让机器人站稳

讲到IMU,似乎与HERMES人形机器人无关,不过客制化IMU能让设计工程师维持拥有天生不稳定运动轨迹(motion profile)的机器人之稳定性;例如为Ballbot设计的客制化IMU,能为这种本来形状就无法“站稳”的机器人,带来维持稳定所需的精确度。

在校准IMU之前需要先校准ADC,这有助于简化IMU的校准,只需要简单的设备就能完成;Kalman滤波器在此是实现数据融合以及精确角度估算输出的关键,并能让机器人完美平衡。Kalman滤波器也能去除陀螺仪信号漂移,以及可能会让加速度计失误的移动加速噪声。
EDNT1702 Pulse P4
*{xa, ya}两个轴代表是加速度计敏感度,与陀螺仪耦合,量测环绕加速度计轴的角速度(angular velocities)。
(来源:参考数据2)*

Kalman滤波器

Kalman滤波器能过滤噪声,产生不可观察的状态(non-observable state),并预测未来状态;过滤噪声非常重要,因为很多传感器的输出噪声都太多,无法直接使用;Kalman滤波器能让设计工程师计算不确定的信号/状态,一个重要的应用是生成估计速度所需的不可观察状态。

通常在机器人的不同关节上都会有位置传感器(编码器),不过简单地区分位置以取得速度,会导致产生噪声;Kalman滤波器能被应用于估算速度,另一个不错的功能是能被用来预测未来状态,这在传感器回馈的时间延迟特别大的时候很有用,时间延迟会导致马达控制系统不稳定。

HERMES系统的控制架构设计

人类操作员会需要能无缝的虚拟远程临场(telepresence),才能让机器人在危险环境执行困难的、原本只能靠人类的灵巧与聪明大脑才能完成的任务;而至关重要的是,整个回馈回路的动力以及延迟必须以人形机器人密切管理。

我们在进行动作训练时,必须要先了解产生某个动作的基本原理;在这种案例中,人类本体感受的反射,也就是让身体能正常运作的肌肉、关节与神经肌肉系统之间的聚合,需要50~100ms的反应时间,而视觉处理反应时间约是200~250ms。这种了解有助于实现机器人操作员在远程操控机器人执行任务,就像他们自己在现场一样。

MIT的设计工程师估计,在平衡回馈信息显示为施加于操作员髋部的力道之策略方面,训练后的反应时间应该要藉于人类本体感受反射以及视觉处理之间;为了以非视觉方法证明髋部的力道回馈策略,会以髋部位置量测参考。代表人类本体在髋部感受到的力道输入以及视觉输入。
EDNT1702 Pulse P5
*HERMES系统与人类操作员的回馈回路图,操作员以腰部的非视觉力道回馈来稳定平衡回馈回路中的机器人(粗线箭头);而细线箭头指示的是视觉数据以及更高层级感知规划的回馈路径。
(来源:参考数据3)*
EDNT1702 Pulse P6
*图为来自髋部本体感觉刺激力道以及视觉刺激阶梯输入信号的人类髋部移位。
(来源:参考数据3)*
EDNT1702 Pulse P7
*人类-机器人之平衡回馈回路的事件传递流程。
(来源:参考数据3)*

让HERMES运动的马达

HERMES机器人的设计是在“电源层”(power planes)上运作,以执行大多数需要较高力道的动作;机器人的末端效应器(end effector)运动在那些层中发生,因为机器人上半身的肩部与肘部马达平行轴;在机器人下半身,则是髋部与膝部马达是在电源层中运作。在人形机器人无法触及某个位置的特定区域时,机器人就能轻松重新定向以执行例如敲击、丢掷或拉抬等任务。

人形机器人的设计会将大多数致动器放在动力马达层;HERMES的致动器设计是大半径间隙(large gap-radius)马达;肩/肘部组合的偏斜(yaw)与滚动(roll)轴以平行致动器机构驱动,包含两个小巧的Dynamixel MX-106伺服致动器以及客制化电子驱动器。那些轻量化的驱动器能在需要时重新导向电源层。
EDNT1702 Pulse P8
*HERMES的右上臂电源层
(来源:参考数据3)*

HERMES的双脚以及手臂/手掌设计很有趣,双脚包含三个接触点,每个区域都配备了荷重元(load cell),因此每一个荷重元联合起来能提供机器人内部的压力中心估计,如下图中响应支撑多边形(support polygon)的凸包(convex hull)。
EDNT1702 Pulse P9
*图为机器人脚着地的冲击干扰之后0~4秒,在支撑多边形内的机器人CoP轨迹。
(来源:参考数据3)*

三个荷重元甚至能在机器人只有单脚接触地面时,提供CoP的最小估计值。
EDNT1702 Pulse P10
*HERMES机器人的脚掌设计可看到荷重元。
(来源:参考数据3)*

HERMES的手掌能抓取例如钻头等物品、按压钻头触发器,也能握起拳头;而HERMES的手臂、手腕、手掌与指头能灵活动作。
EDNT1702 Pulse P11
*HERMES的手掌能抓取钻头等物品,也能握拳。
(来源:参考数据3)*
EDNT1702 Pulse P12
*HERMES有双灵活的手。
(来源:参考数据3)*

HERMES的终极考验

把一堵墙打穿对于人类来说似乎很简单,但HERMES得证明它可以执行这种需要强大力道以及平衡动作的任务,展现人类感知以及此远程操控人形机器人马达技术的整合性能。
EDNT1702 Pulse P13
*HERMES系统架构图。
(来源:参考数据3)*

叫机器人打墙并不容易,因为需要施加高力道才能击穿一道墙,同时还要维持身体平衡稳定,以及利用身体的力量来冲击墙面。操作员下的第一道指令,是以HERMES内建的摄影机来确定墙的位置,然后寻找一个可以用机器人的单手握住的锚点。

然后操作员让机器人的手抓住锚点,发出「拉」的指令让机器人的身体朝着墙移动,同时用另一只空着的手握拳、向墙面击打。在击穿墙面之后,操作员下指令把墙推开,使机器人足以透过平衡回馈接口的力道回馈重新取得平衡,包括上半身与下半身的定位。

随着我们进入2017年,机器人应用呈现令人兴奋的商机;尤其是与人工智能的结合(尽管有许多争议),将会改变我们所知的世界。

参考数据:

  1. Robot-Human Balance State Transfer during Full-Body Humanoid Teleoperation Using Divergent Component of Motion Dynamics, Joao Ramos, Albert Wang, and Sangbae Kim, 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, May 16-21, 2016
  2. Constructing IMU Based On ADC and Sensors Calibration for Ballbot, Hosein Zabihi Kheibari, Mahdi Akbari, Atefe Sadat Moosavi Nejad, Proceeding of the 2013 RSI/ISM International Conference on Robotics and Mechatronics, February 13-15, 2013, Tehran, Iran.
  3. The HERMES Humanoid System: A Platform for Full-body Teleoperation with Balance Feedback, Albert Wang, Joao Ramos, John Mayo, Wyatt Ubellacker, Justin Cheung and Sangbae Kim, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), November 3-5, 2015, Seoul, Korea

编译:Judith Cheng

本文授权编译自EDN Taiwan,版权所有,谢绝转载

EETC wechat barcode


关注最前沿的电子设计资讯,请关注“电子工程专辑微信公众号”。

本文为EET电子工程专辑 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Steve Taranovich
EDN资深技术编辑。Steve Taranovich是EE Time姊妹网站Planet Analog的主编,也是EDN的高级技术编辑。 Steve在电子行业拥有40年的从业经验。 他在纽约布鲁克林理工大学获得电子工程硕士学位,在纽约布朗克斯纽约大学获得BEEE学位。 他还是IEEE长岛教育活动委员会主席。 他在Burr-Brown和德州仪器公司工作多年,在模拟设计方面有丰富的经验,并有着嵌入式处理的教育背景。 Steve做了16年的电路设计工程师,随后他成为Burr-Brown Corp的首批现场应用工程师之一,并成为他们首批前往欧洲、印度和中国的全球客户经理之一。
  • 晶圆级脉冲激光沉积将改变游戏规则 一项技术要想产生广泛的影响,它不仅要解决短期的挑战,还应该超越现有技术的进步,为未来的创新打开大门。这就是我们对泛林集团(Lam Research)今年早些时候推出的全球首个用于半导体量产的脉冲激光沉积(PLD)技术的描述。
  • 晶合集成与思特威首颗集成1.8亿像素全画幅CIS芯片成功试产 当今这个数字化时代,图像传感器技术的发展对于摄影、安防、医疗等多个领域的重要性不言而喻。近日,合肥晶合集成电路股份有限公司与国内设计公司思特威联合宣布,他们共同研发的首颗1.8亿像素全画幅(2.77英寸)CMOS图像传感器(CIS)已成功试产。
  • 为什么相干激光雷达在ADAS和汽车传感领域越来越受欢迎 激光雷达正在迅速获得人们的关注,并被广泛用于ADAS和自动驾驶汽车传感系统,但该技术有多种实现方法。本文介绍了这些方法以及相干激光雷达检测的相对优势。
  • 设计汽车雷达系统的挑战 雷达在新型汽车设计中随处可见。现在,高清雷达可以在所有天气条件下发挥作用,可以作为AI物体检测的前端,与其他传感器通道相辅相成,进一步提高准确性和安全性。高价值嵌入式雷达系统的制造商有着巨大的潜力。然而,如何在竞争中发掘这种潜力可能是一项挑战。
  • 面对欧盟效率和空载功耗两大新要求,BLDC设计怎么破? BLDC的应用持续增长,主要市场驱动力来自于以下几个方面:工业类电机应用节能指令提出了新要求;印度对于吊扇应用,致力于实现50%的节能目标;越来越多设备的终端客户,希望有更好的使用体验。
  • 马斯克:正与首位脑机芯片受试者讨论植入第二代芯片 据悉,Neuralink公司正在积极推进第二阶段的临床试验。该公司已获得美国FDA的批准,将在6月份对受试者进行芯片植入手术。
  • 全球折叠屏手机快速增长,中国品牌压 • 得益于西欧、关键亚洲市场和拉丁美洲市场的增长,以及中国品牌的持续领先,全球折叠屏手机出货量在2024年第二季度同比增长了48%。 • 荣耀凭借其在西欧特别强劲的表现,成为最大的贡献者,成为该地区排名第一的品牌。 • 摩托罗拉的Razr 40系列在北美和拉丁美洲表现良好,为其手机厂商的出货量贡献了三位数的同比增长。 • 我们预计,头部中国手机品牌厂商的不断增加将至少在短期内抑制三星Z6系列在第三季度的发布。
  • AI网络物理层底座: 大算力芯片先进 AI技术的发展极大地推动了对先进封装技术的需求,在高密度,高速度,高带宽这“三高”方面提出了严苛的要求。
  • 奕斯伟计算DPC 2024:发布RISAA(瑞 奕斯伟计算2024首届开发者伙伴大会以“绿色、开放、融合”为主题,从技术创新、产品应用、生态建设等方面,向开发者、行业伙伴等相关方发出开放合作倡议,加速RISC-V在各行各业的深度融合和应用落地,共同推动RISC-V新一代数字基础设施生态创新和产业发展。
  • 重磅发布:Canalys 2024年中国云渠道 2024年 Canalys 中国云计算渠道领导力矩阵冠军厂商分别是:阿里云、华为云和亚马逊云科技(AWS)
  • 全球第三!全球高端手机市场,华为猛涨80%,苹果坠落正拉开帷幕! 在全球智能手机竞争日益激烈的情况下,谁能在高端市场站稳脚跟,谁就占据了主动权。一直以来全球智能手机市场格局都是,苹果专吃高端,其他各大厂商分食全球中低端市场。但现在市场正在其变化。根据Canalys最
  • 路特斯的努力有多“韧性” 文|沪上阿YI路特斯如今处在一个什么样的地位?吉利控股集团高级副总裁、路特斯集团首席执行官冯擎峰一直有着清晰的认知:“这个品牌的挑战依然非常大。首先,整个中国市场豪华汽车整体数据下滑了30%~40%,
  • 银河E5和小鹏MONAM03开门红,纯电车或将卷土重来? 文|萝吉今年下半年开始,国内新能源市场正式跨过50%历史性节点,且份额依然在快速增长——7月渗透率破50%,8月份破55%……在这一片勃勃生机万物竞发的景象下,新能源市场占比最高的纯电车型,却在下半年
  • 2.4亿美元!“果链”捷普科技在印度设厂! 周二,捷普科技(Jabil)官员与印度泰米尔纳德邦代表团在泰米尔纳德邦首席部长MK Stalin的见证下,签署了一份备忘录。MK Stalin正在美国进行为期17天的访问,旨在吸引新的投资。MK St
  • 成立超30年!天津三星电子注销;同时以8.4亿美元向中国公司出售偏光膜业务! 天眼查信息显示,天津三星电子有限公司经营状态9月6日由存续变更为注销,注销原因是经营期限届满。该公司成立于1993年4月,法定代表人为YUN JONGCHUL(尹钟撤),注册资本约1.93亿美元,
  • AMD将推出统一GPU架构,挑战英伟达CUDA“护城河”! 在德国柏林举行的IFA 2024上,AMD计算和图形业务集团高级副总裁兼总经理Jack Huynh宣布,公司将把以消费者为中心的RDNA和以数据中心为中心CDNA架构统一为UDNA架构,这将为公司更有
  • 大力拓展半导体行业-节卡复合机器人有何优势? 会议预告向世界展示中国最具创新力、领导力和品牌化的产品与技术!9月27号,“第6届国际移动机器人集成应用大会暨复合机器人峰会”将在上海举行,敬请关注!逐个击破现有痛难点。文|新战略半导体行业高标准、灵
  • 60%汽车供应商裁员! 疫情后的劳动力囤积和强有力的员工保护规则掩盖了德国高薪制造业工作市场令人担忧的变化。根据联邦劳工办公室的数据,欧元区最大经济体德国的失业率在2019年春季曾达到历史最低点4.9%,现已上升至6%。虽然
  • 精密数据采集信号链设计中的常见难点解析 许多应用都要求采用精密数据采集信号链以数字化模拟数据,从而实现数据的精确采集和处理。精密系统设计师面临越来越大的压力,需要找到创新的办法,提高性能、降低功耗,同时还要在小型PCB电路板上容纳更高的电路
  • 下线、投产...这3个电驱动项目传最新进展 近日,3个电驱动项目迎来最新进展,包括项目量产下线、投产、完成试验等,详情请看:[关注“行家说动力总成”,快速掌握产业最新动态]青山工业:大功率电驱项目下线9月5日,据“把动力传递到每一处”消息,重庆
广告
热门推荐
广告
广告
广告
EE直播间
在线研讨会
广告
广告
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了