摘要
本文介绍仅需0 dBm LO驱动的宽带3 GHz至20 GHz SiGe无源混频器。新巴伦结构是实现宽RF带宽的关键创新。针对IF频段应用也采用相同的巴伦拓扑,支持300 MHz至9 GHz的宽IF。该高性能双平衡混频器可用于上变频或下变频。该混频器采用2 mm × 3 mm、12引脚小型QFN封装,提供23 dBm IIP3和14 dBm P1dB。采用3.3 V电源供电时,混频器功耗为132 mA。
简介
宽带混频器广泛应用于多功能无线收发器、微波收发器、微波回程、雷达和测试设备。宽带混频器使得在具有各种无线电参数的动态可编程性的无线电架构中使用单个混频器成为可能。
已经证明,CMOS和BiCMOS等先进硅技术能够在相对窄带应用中实现高性能混频器。因此宽带混频器最期待的实现方式是使用集总元件或其他兼容IC制造技术和几何形状的结构制成。平衡混频器是首选拓扑结构,因为与非平衡混频器相比,它们在线性、噪声系数和端口到端口隔离方面具有更好的整体性能。巴伦是单平衡混频器和双平衡混频器中用于在平衡和非平衡配置之间转换RF、LO和IF信号的关键组件。能够在标准IC铸造工艺中集成巴伦至关重要,这样才能生产出宽带集成混频器。
本文介绍一种可以在硅、GaAs或任何其它成过程中轻松实现的创新巴伦结构。这种巴伦拓扑的带宽比传统巴伦结构更宽。在0.18 μm SiGe BiCMOS工艺中,使用宽带巴伦设计一款3 GHz至20 GHz高性能混频器。
宽带巴伦
混频器最重要的性能参数包括转换增益、线性度、噪声系数和工作带宽。集成混频器中使用的巴伦对所有这些混频器的性能都有重大影响。集成巴伦的关键性能包括工作频率范围、插入损耗、幅度/相位平衡、共模抑制比(CMRR)和物理尺寸。
集成电路应用中的两种常见巴伦结构是传统平面变压器巴伦和Marchand巴伦。这两种巴伦在窄带应用中都有良好的性能。平面变压器巴伦由两个紧密耦合的变压器组成。电感的自感和谐振频率是带宽的两个主要限制因素。自感限制低频端的带宽,非平衡和平衡终端的寄生电容和不对称终端限制高频端的带宽。Marchand巴伦由四条四分之一波长传输线组成,通常需要在芯片上占用大量空间。在集成电路中利用交错变压器布局,演示了微型Marchand巴伦。每条线段的电气长度要求限制了Marchand巴伦的带宽。当电气长度偏离所需的四分之一波长时,振幅和相位平衡就会降低。通常,设计良好的变压器巴伦或Marchand巴伦可以覆盖3×至4×最大-最小频率比的频率范围,且性能合理。
众所周知,Ruthroff巴伦具有非常宽的带宽,许多分立元件产品都是基于Ruthroff结构开发。但是,还没有发现对微波集成电路应用类似结构。
图1:Ruthroff型宽带巴伦。
图1a显示了一个Ruthroff型宽带巴伦原理图,可使用三个电感在平面半导体工艺中轻松构建。一个布局示例如图1b所示。在该布局中,只需要两个金属层,一个厚金属层用于三个低损耗电感,一个地下通道金属层用于连接。当有额外的厚金属层可用时,L1和L3可以垂直耦合,这样尺寸就会更小,它们之间的磁性耦合也可能会更好。
宽带特性得益于结构简单,这会导致寄生电容更少。单端信号由L1和L2分压得到。因此,巴伦的正端口正好是同相位单端信号电压的一半。由于L1和L3之间的负耦合,巴伦的负端口是具有180°相移的单端信号电压的一半。
在非常宽的带宽上可以实现出色的振幅和相位平衡。图2显示了宽带巴伦配置的仿真性能。振幅不平衡是S21和S31之间的差,相位误差是S21和S31与期望的180°之间的相位差。建议的巴伦具有非常好的振幅平衡,以及3 GHz到20 Ghz之间接近180°的相位差。在平衡混频器和推挽放大器等许多应用中使用巴伦时,共模抑制非常重要。图5b所示的仿真结果表明,3电感巴伦在3 GHz到20 GHz范围内的CMRR优于20dB。
图2:宽带巴伦的仿真性能。
与变压器巴伦拓扑结构一样,3电感巴伦的带宽也受低频端电感和高频端寄生电容的限制。当电感较低时,负载阻抗对端口3的L1和L2之间的分压和端口2的转换电压影响较大。虽然在低频范围内振幅平衡和相位差仍然可以接受,但插入损耗增大。因此,较低的终端阻抗或较高的电感将有利于低频性能。在高频端,L1和L2之间的寄生电容会降低变压器的性能,导致较大的相位误差。精心布局并考虑降低寄生电容可以扩大巴伦的高频工作范围。
集成巴伦的物理尺寸限制了低端带宽。为了探索建议的巴伦结构在低频应用中的可行性,设计了一款0.5 GHz到6 GHz的巴伦,并与基于变压器的传统巴伦进行了对比,性能如图3所示。
图3:传统巴伦和新巴伦的仿真性能比较。
集成宽带RF/微波混频器
宽带双平衡无源混频器设计采用Jazz的SiGe 0.18 μm工艺和3电感巴伦配置。混频器的RF、IF和LO端口为50 Ω单端端口,并在RF和IF端口集成巴伦。集成的RF巴伦经过优化,可覆盖3 GHz至20 GHz RF频率范围。集成的IF巴伦经过优化,可覆盖500 MHz至9 GHz的极宽频率范围。单端LO信号通过有源放大器电路在内部转换为差分信号以减小芯片尺寸。使用高速NPN的两级宽带放大器向无源混频器的MOSFET栅极提供足够的信号电压摆幅,且在1 GHz至20 GHz频率范围内只有0 dBm输入功率。
图4:宽带双平衡无源混频器。
该混频器采用2 mm × 3 mm QFN小型封装,并使用铜柱倒装芯片进行互连。铜柱连接的附加寄生电容很低,可保持硅的宽带性能。该混频器采用3.3 V偏置电源,室温下的功耗为132 mA。测得的转换损耗和IIP3性能如图5.8所示。混频器的RF、LO和IF端口在其宽工作频率范围内匹配良好。图6显示这些端口的回波损耗。应该注意的是,RF回波损耗取决于IF端口阻抗,图6a中的结果是使用0.9 GHz的IF频率测得。
图5.宽带双平衡无源混频器测得的性能。
图6.宽带双平衡无源混频器测得的回波损耗。
表1:我们的宽带混频器与市场同类产品比较
与市场上的宽带混频器(如表1中所示)相比,使用3电感巴伦设计的混频器可同时实现RF和IF范围的最宽带宽。它具有最低的LO功耗和最高的集成级别。整体性能优于任何已报道的产品或发布的宽带混频器产品。
结论
本文介绍了一种适合现代半导体工艺平面实施方案的Ruthroff型宽带巴伦结构。设计了一款使用宽带巴伦的高性能双平衡混频器并对其进行了性能测量。
责编:Amy Guan
本文为《电子工程专辑》2020年6月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅