5G通信的建设给通信电源厂商带来了商机,同时也给设计者带来了更多的挑战。本文首先对这些新的要求和挑战进行了分析,然后以相关产品为例对如何应对这些挑战进行了详细的叙述。

1.引言

众所周知,包括韩国和美国在内的世界多个国家和地区已经率先开启了5G通信。中国也在20多个城市开始了5G通信试点并会在未来大力推广。5G通信的建设方兴未艾。

相比于现有的3G,4G通信,5G通信具有超高速率,极低延时等特点。这些特点产生的原因是5G通信采用了更高频段的频谱,以中国为例:4G LTE的频段为1.8GHz-2.65GHz,而5G目前公布的频段为3.3GHz-5GHz。而未来还会建设高于6GHz的毫米波(mmW)5G通信。根据光速公式:

c=λν (1)

频率ν越高,意味着波长λ越小,对于无线通信,这意味着通信信号的覆盖面积越小。这一方面需要5G通信基站的密度更高,另一方面需要单一通信基站采用Massive MIMO (64T64R,128T128R等), beamforming等技术解决信号覆盖面积小等问题。这些新技术和应用对于通信电源的自然散热能力,维护成本等提出了新的需求。

同时,5G较为丰富的组网架构和布局方式带来了更多的供电方式及其组合,包括交流(UPS)直接供电,-48V供电,HVDC(高压直流)供电等。由于在很长一段时间内5G的建设还需要兼容(保留)现有3G和4G通信,因此多数采用现有基站和中心局进行改造和升级的方式,这意味着通信电源需要同时给3G/4G和5G通信设备供电,对通信电源的输出功率,功率密度,可靠性等提出了新的需求。

本文的第二部分将对这些新需求进行详细论述,针对这些新需求给通信电源设计者带来的挑战,第三部分给出了英飞凌科技有限公司的解决方案,以帮助设计者快速,可靠地设计出适合5G通信应用的产品。最后将对本文进行总结。

2.5G通信对电源的要求

5G通信的建设给开关电源企业带来了巨大商机。根据安信证券研究中心的数据,5G通信电源的市场规模预计为315亿元人民币。而巨大商机也同时给通信电源设计者带来了新的挑战。

2.1更大的输出功率和更高效率

由于5G通信需要采用Massive MIMO等技术,5G基站的AAU单扇区输出功率由4G的40W~80W上升到200W甚至更高,同时由于处理的数据量大幅度增加,BBU(基带处理单元)(或者在5G某些组网模式下被拆分为CU和DU)的功率也大幅增加,其功率已经超过1000W。对于目前较流行的5G基站组网方式:3扇区AAU+1个BBU,假设AAU效率为20%,那么单单为5G基站供电的通信电源的输出功率大约为:

P_out=(3*200)/0.2+1000=4000W (2)

而原有4G通信基站供电的通信电源输出功率为2000W~3000W。输出功率大幅提升。

根据华为技术有限公司提供的数据,3G(兼容2G),4G(兼容3G),5G(兼容3G和4G)基站的功耗如下图所示。增加5G通信后基站电源的功率上升68%。

图1:不同通信制式下基站耗电量对比图

5G通信对电能需求增大意味着对通信电源的效率要求更高,从而降低通信运营成本(OPEX),根据中国联通的统计数据,通信数据中心(中心局机房)的OPEX中电费占比达到28%。虽然供电系统的能耗只占通信数据中心总能耗的10%,但是供电系统会加剧制冷系统的负担,以30KW的系统为例,效率提高5%可以使得电源设备一年减少好点18000度,空调电耗减少7200度,提高通信电源转换效率是通信数据中心的降成本的关键手段之一。

5G通信的数据流量相比3G/4G通信变得更加不均衡,某时段流量可能极大,某时段可能小,这意味着通信电源的实际负载范围会从轻载到满载。对于5G通信电源,为了确保在任何负载下通信系统的耗电都达到最低值,效率的要求不再是某一负载下达到最高值,而是要求在很宽的范围内效率都要达到最高值,效率曲线变为较为平稳的直线,如图2所示。

图2:5G通信电源效率要求曲线示意图

2.2 高功率密度

如前所述,对于通信数据中心及宏基站,多数采用现有设备扩容的方式来建设5G通信设备。其中留给用于5G通信需要的电能的电源柜的空间往往极其有限,甚至只能采用原有电源柜。在这些情况下电源柜的输出功率需要大幅度增加。这就要求通信电源模块(通常称其为整流模块)在保持体积基本不变的情况下输出功率大幅度增加,即功率密度提升。例如大量用于4G通信中的3KW输出整流模块尺寸为280mm*80mm*40mm(长*宽*高),其功率密度为:

ρ=3000/((280/25.4)*(80/25.4)*(40/25.4))=55W/in^3  (3)

而为了应用于5G通信,在尺寸不变的情况下输出功率需要达到4KW,那么电源功率密度为:

ρ=4000/((280/25.4)*(80/25.4)*(40/25.4))=73W/in^3  (4)

对于5G微基站,AAU的供电电源采用抱杆设计,例如中兴通讯推出的刀片式5G通信电源(如下图所示)。为了降低整体箱体重量和尺寸,要求内部的电源尺寸尽量小,高度尽量低(甚至低于20mm),相应地电源的功率密度需要大幅度提高。

图3:5G室外通信电源机箱

2.3自然散热

在5G通信中,微(小)基站数量将大大幅度增长,根据中信建投证券的分析报告,5G微基站的数量将为6575万至1.64亿。这些微基站的供电电源绝大多数都将被安装在密闭空间内,如图3所示,以满足IP65等防护等级,从而可以被安装在室外,野外等环境。由于被安装于密闭空间,因此此类通信电源只能采用自然散热(无强制风冷或无水冷)方式。与此同时5G制式下通信电源的输出功率相比3G/4G通信制式更大,这对通信电源的散热设计带来更为巨大的挑战。

2.4高可靠性

作为通信系统的心脏,通信电源的可靠性决定了整个系统的可靠性。5G通信将会应用在自动驾驶,智能制造,人工智能等重要场合,因此5G通信中对通信电源系统的可靠性提出了更高的要求。同时,如前面介绍5G通信将出现海量的微(小)基站,若出现批量失效,其维修成本将高的惊人。为了降低维护成本,提高电源的可靠性是对5G通信电源的主要要求之一。

总结起来,这些新要求对于通信电源设计者来说挑战非常大,常常使他们加班加点,甚至夜不能寐。

3. 5G通信电源解决方案

3.1大功率和高效率方案

对于开关电源来说,能否输出更大功率,决定因素在于功率变换产生得热能否被散掉,能否保持器件的温度稳定在合适值。散热决于两个因素,一是产生的损耗大小,损耗小,那么容易被散掉,反之亦然;二是电源的散热能力,这取决于散热器,风扇(强制风冷)和热路设计。而前者是热产生的源头,更易于解决问题;而后者的决定因素很多,例如环境,结构尺寸等,不易于实施和解决问题。

在隔离型开关电源中,依据拓扑的不同,功率半导体器件的损耗约占总损耗的30%~80%,因此降低功率半导体器件的损耗对于提高输出功率,同时也是提高效率具有重要意义。对于开关电源中常用的功率半导体器件MOSFET或者IGBT,损耗包括包括开关损耗(半导体开通和关断过程中产生的损耗)和导通损耗(半导体在稳态开通过程中由于导通电阻或者导通压降产生的损耗)。只有将开关损耗和导通损耗都减小才可以降低半导体的整体损耗。英飞凌的CoolMOS C7正式这样一款高压MOSFET。如图4所示的CoolMOS C7与CoolMOS  CP(上一代开关损耗最小的产品)在2.5KW PFC电路不同开关频率下的损耗对比,从中可以看出CoolMOSTM C7的开关损耗大幅度降低。而对于MOSFET 的导通损耗,其决定因素就是直流导通电阻RDS(on),在TO247封装内实现600V和650V耐压下RDS(on)小于20mohm(IPW60R017C7,其典型值为15mohm,IPW65R019C7,其典型值为17mohm)。

当输出功率更大时,即使使用最低损耗的器件也无法将其热耗散掉,此时开关电源往往需要并联功率半导体器件,此时功率功率半导体的参数一致性,特别是门限电压和寄生电容的参数离散性对功率器件的可靠并联影响很大。

图4 :CoolMOS C7 与CoolMOS CP不同频率下损耗对比分析图

在大功率输出电源设计中必然要求电源的转换效率更高,以解决散热问题。前面介绍的CoolMOST C7可以帮助设计者在不进行其他设计修改的情况下有效地提高效率。图5是CoolMOST C7用在600W LLC电路中与英飞凌之前代产品效率对比情况。

图5: CoolMOST C7与前一代产品效率对比图

采用近几年出现的宽禁带半导体功率开关如氮化镓晶体管和碳化硅MOSFET则是提高开关电源效率的另一个有效的途径。以英飞凌的氮化镓晶体管CoolGaN为例,采用2颗70mohm导通电阻的IGO60R070D1和两颗33mohm导通电阻的IPT65R033G7组成的电流连续模式(CCM)图腾柱(totem-pole)无桥PFC可以在2.5KW PFC电路中实现宽负载范围内超过99%的效率。电路拓扑及效率曲线如图6和图7所示:

图6:采用GaN晶体管的图腾柱无桥PFC拓扑示意图

图7: 2.5KW 图腾柱PFC演示版效率曲线图

对于前文提到的在整个输出功率范围内实现平滑的效率,一方面需要选择合适的功率器件,包括功率半导体的选择(硅材料功率开关需要平衡导通损耗和开关损耗或宽禁带功率开关)和磁性元件的设计(特别磁芯材料的选择,平衡不同频率或者负载下的损耗),使其在轻载下的损耗尽量的小。另一方面通过电路拓扑的选择实现轻重载下效率曲线的平衡。目前比较常用的方式是采用多相interleave(交错并联)拓扑。例如在PFC级和DC/DC级分别采用interleave方式。图8和图9给出了两相interleave的PFC和LLC,根据功率不同,可以三相甚至更多相。在轻载下通过关闭其中的一相或者几相可以有效地提高轻载效率。该方案另一个好处是即使在重载时往往也不需要并联功率半导体器件,利于PCB设计,散热设计和提高电源可靠性。

图8:两相交错并联PFC电路示意图

图9:两相交错并联LLC电路示意图

3.2高功率密度方案

高功率密度开关电源可以有效减小所应用系统的尺寸、空间和重量,这对通信系统尤为重要。一般认为提高开关电源频率可以提高功率密度,因为理论上可以缩小无源器件(包括磁性元件和电容)的尺寸。但是提高开关频率会带来基于硅材料的功率半导体器件的损耗明显增大,且磁性元件的磁损也会显著增加,这有可能带来散热器和风扇尺寸的增大及磁性元件散热的困难。因此提高开关频率对于采用传统硅材料作为功率开关的通信电源带来的功率密度提升是很有限的。

3.2.1 采用表面散热的贴片器件配合子板的设计

为了提高开关电源功率密度,需要有效的利用空间尺寸。传统的单一PCB板的设计模式是将所有器件都焊接到该PCB上,那么空间的利用率非常低,特别是贴片器件的上方空间被浪费掉,大大限制了功率密度的提升。另一方面传统中大功率开关电源的功率开关都采用插件封装,例如TO247,TO220等等。这次插件器件本身尺寸较大,且需要留出空间将其装配到散热器上,这又限制了功率密度的提升。英飞凌提出的方案为:功率器件采用贴片器件,功率器件及所有贴片器件尽可能焊接到小的子板上,散热器通过压接在功率器件上为其散热。子板再焊接到主板上。但是传统贴片封装都是底面散热,表面为黑色塑胶材料,其热阻很大,压接散热器并不能有效将功率器件的热耗散掉。为了解决这一问题,英飞凌推出了表面散热的功率器件封装,例如DDPAK,QDPAK等等。采用DDPAK封装的功率器件焊接到子板上的示意图如下图所示。

图10:采用DDPAK封装的功率器件子板

而采用该方案设计的1.6KW钛金版(效率在半载时高于96%)服务器电源演示版如下图所示。其功率密度高达到44W/in^3。

图11: 1.6KW高密钛金版服务器电源

3.2.2 氮化镓配合多变压器的设计

前面提到当工作频率提高后,由于基于硅材料的功率半导体寄生参数较大,开通和关断速度较慢,开关损耗(与开关频率成正比)会大幅度增加,损耗增加带来散热器的增大等问题,从而限制了开关频率的提高,无法实现高功率密度设计。而如果采用款基于禁带材料的氮化镓晶体管,情况就大为不同。由于氮化镓晶体管的Qg, Coss等参数只有类似导通电阻的硅材料MOSFET的1/10以下,开关损耗即使在高频下也相对很小。这样使得开关电源工作在高频,提高功率密度称为可能。

另外对于工作频率提高后磁性器件损耗增加(根据斯坦梅斯磁损公式,主要是磁损的增加)的解决措施,比较实用的方式是将传统的一个变压器分为两个或多个变压器,一方面利于变压器的散热,另外利于变压器的绕组,降低变压器的成本。多个变压器通过绕组的串并联可以实现变压器电流和损耗的均衡,甚至通过磁集成技术来抵消部分磁损,降低变压器的损耗。英飞凌采用GaN晶体管设计的3.6KW LLC电路的演示版的功率密度达到160W/in^3,LLC的谐振频率达到350KHz,这么高的工作频率仍可实现超过98%的效率[13],若采用硅材料功率开关是无法实现的。演示版如下图所示。

图12:使用GaN的3.6KW LLC转换电路

3.3自然散热方案

设计好一个通过自然散热方式的通信电源,首要考虑的是如何让主要发热器件可以通过外壳进行散热,从而将温度控制在规格范围内。开关电源的两个主要发热器件是功率半导体和磁性元件。对于功率半导体器件,传统的插件封装器件不适合用于5G通信电源中,所以最适合自然散热的封装是大尺寸贴片封装的功率半导体,例如英飞凌公司的DDPAK封装和TO-leadless封装,如图12所示。前者由于是表面散热,因此可以将其焊接与PCB板上后通过导热绝缘膜直接压接与机壳上,散热效果非常理想。后者由于其焊接面尺寸大,与PCB焊接后散热效果相比其他封装也是大大提升。

图13:英飞凌DDPAK,TO-Leadless封装图

对于磁性元件元件的散热,以主功率变换变压器为例,除了可以采用将一个变压器分为两个甚至更多外,还可以改变变压器在PCB上的安装方式,例如将传统焊接在PCB上面的方式改变为PCB开窗,将变压器下沉,这样变压器可以通过下表面与机壳接触来散热,甚至通过上下表面同时与上下机壳接触来散热,如图13和14所示。

图14:传统变压器安装方式

图15:自然散热条件下建议的变压器安装方式

3.4高可靠性方案

根据IBM 2014年提供的如图15所示的开关电源产品维修带来的成本分析,在设计阶段的成本是最低的。因此对于5G通信对其供电电源系统提出的更高可靠性要求,更是需要在设计阶段采取有效的措施来保证产品可靠性。

图16:不同阶段开关电源维修相对费用示意图

对于开关电源的可靠性,从以下几个方面进行设计:

(1)选用高质量的器件:器件本身的质量是根本,高质量的器件才有可能组成高质量的开关电源。选用正规,信誉好的品牌的器件是设计高可靠性产品的第一步。

(2)严格满足器件的规格及降额要求:每个器件都有其规格,绝不可超规格使用。同时为了保证系统的寿命和失效率,还需要有一定的降额。功率半导体,磁性元件的绝缘和电容等的寿命都与其工作温度强相关,如果没有降额其失效率和寿命都将大大上升。业界有IPC9592等标准可作为降额参考。

(3)完善测试项目:设计阶段的测试是验证产品可靠性的重要步骤。测试要尽量模拟实际应用工况,例如对于5G通信电源,由于其负载波动会很大,那么动态负载测试就非常关键。对于户外用电源,由于可能会遭受雷击,那么雷击,浪涌测试就非常关键。

4.总结

5G通信的建设给通信电源厂商带来了商机,同时也给设计者带来了更多的挑战。本文首先对这些新的要求和挑战进行了分析,然后以相关产品为例对如何应对这些挑战进行了详细的叙述。

作者:宋清亮,英飞凌科技(中国)有限公司

责编:Amy Guan

本文为《电子工程专辑》2020年6月刊杂志文章,版权所有,禁止转载。点击申请免费杂志订阅 

阅读全文,请先
您可能感兴趣
物理世界对智能的需求正在推动边缘设备支持复杂计算,如人工智能、机器学习、数字信号处理和数据分析等。这增加了能源需求,而这些设备通常处于能源匮乏状态。因此,迫切需要从根本上重新考虑制造这些设备的计算硬件以提高能源效率。
英诺赛科此次上市标志着作为氮化镓功率半导体领域的龙头企业正式进入资本市场,并成为港股“第三代半导体”第一股。英诺赛科的开盘价为31港元,较发行价上涨了0.5%,但随后股价跌破了发行价,市值约为270亿港元......
自1984年,意法半导体首次进入中国,成为首批在中国开展业务的半导体公司。意法半导体CEO Jean-Marc Chery日前表示,中国市场是不可或缺的,是电动汽车规模最大、最具创新性的市场,与中国本地的制造工厂达成合作,具有至关重要的作用。他还表示,意法半导体正在采用在中国市场学到的最佳实践和技术,并将其应用于西方市场,“传教士的故事结束了”。
本文整理分析了30家本土上市半导体公司2024三季度财报数据,结合第三季部分企业的重点新闻,让读者了解目前本土电源管理芯片市场现状及企业布局。
宽禁带半导体材料的兴起成为了电力电子领域最为显著的变化之一。作为行业领导者,PI公司不仅敏锐地捕捉到了这一趋势,而且通过自主研发和技术创新,积极地适应了市场的变化。借该公司1700V氮化镓功率器件发布之机,笔者有幸对PI营销副总裁Doug Bailey进行了专访。
氮化镓在成本上具有显著优势,但目前的氮化镓开关器件大多局限于较低的耐压水平,无法满足更高电压应用的需求。在此背景下,开发出高压氮化镓开关IC,就具有革命性意义。
• 目前,iPhone在翻新市场中是最热门的商品,并将长期主导着翻新机的平均销售价格。 • 全球翻新机市场持续向高端化发展,其平均销售价格(ASP)现已超过新手机。 • 新兴市场是增长的最大驱动力,消费者对高端旗舰产品有着迫切需求。 • 由于市场固化和供应链的一些问题限制推高中国、东南亚和非洲等大市场的价格。 • 2024年,这些翻新机平均销售价格将首次超过新手机。
从全球厂商竞争来看,三季度凭借多个新品发布,石头科技市场份额提升至16.4%,连续两季度排名全球第一……
最新Wi-Fi HaLow片上系统(SoC)为物联网的性能、效率、安全性与多功能性设立新标准,配套USB网关,可轻松实现Wi-Fi HaLow在新建及现有Wi-Fi基础设施中的快速稳健集成
其中包含Wi-Fi 7和蓝牙5.4 模组FME170Q-865、Wi-Fi 6和蓝牙5.4 模组FCS962N-LP、Wi-Fi 6和蓝牙5.3模组FCU865R 、独立Wi-Fi和蓝牙模组FGM840R、高功率Wi-Fi HaLow模组FGH100M-H……
今天推荐的视频介绍了单片机(MCU)和数字信号控制器(DSC)之间的差异、Microchip DSC的单核和双核架构、DSC的应用示例以及可将您的设计推向市场的开发资源。更多更全视频尽在Microch
1月7日,据韩媒 sisajournal-e 消息,三星计划 2025 年下半年推出三折叠手机,采用 G 形双内折设计,完全展开后尺寸为 12.4 英寸。据称,有别于华为的 S 形折叠屏方式(In&O
1月9日,市场研究机构CINNO Research发布2024年全球智能手机面板出货报告称,2024年全球智能手机面板出货量或将同比增长8.7%至22.7亿片,达到历史新高。主流手机品牌全球面板采购量
近日,联想在CES 2025展会上展示了全球首款卷轴屏PC——ThinkBook Plus Gen 6。据悉,ThinkBook Plus Gen 6卷轴屏AI PC的核心魅力在于其独有的可卷曲显示屏
手机充电器ic U6773S助推充电便利好享受面对手机存储空间不足的问题,我们可以从多个方面入手,清理缓存、卸载不必要的应用、移动文件至外部存储、使用云存储服务等等。面对手机充电器充电速度慢、效率低的
 △广告 与正文无关 日前,苏州西典新能源电气股份有限公司(股票代码:603312,以下简称“西典新能”)发布公告称,公司经过3年多的产品和工艺研发及设备攻关,信号采集组件FCC技术取得重大进展,公司
  在千级电子净化车间中设置通风系统时,需要综合考虑多个因素,包括洁净度要求、换气次数、气流组织、空气处理、温湿度控制以及节能与环保等。以下是合洁科技电子洁净工程公司的一些具体的设
近日,闻泰科技在一场电话会议中阐述了其出售ODM(原始设计制造)业务的战略考量。           闻泰科技表示,基于地缘政治环境变化,考虑到 ODM 业务稳健发展和员工未来发展利益最大化,公司对战
近日,由工业和信息化部、国家广播电视总局、国家知识产权局联合评选的“2024年度视听系统典型案例”公示名单正式发布。聚飞光电自主研发的大尺寸 Micro LED 超高清显示屏系统经专家评审及公示程序,
日前,奥康国际发布公告表示终止发行股份购买资产。根据公告,2024 年 12 月 24 日,奥康国际披露《关于筹划发行股份购买资产事项的停牌公告》,公司拟筹划以发行股份或支付现金的方式购买联和存储科技