本文主要解释许多交叉验证技术中的一些技术及其工作原理。

本文主要解释许多交叉验证技术中的一些技术及其工作原理。

介绍

考虑在数据集上创建模型,但它在看不见的数据上失败。我们不能简单地将模型拟合到我们的训练数据中,然后坐等它在真实的、看不见的数据上完美运行。

这是一个过度拟合的例子,我们的模型已经提取了训练数据中的所有模式和噪声。为了防止这种情况发生,我们需要一种方法来确保我们的模型已经捕获了大多数模式并且不会拾取数据中的每一点噪声(低偏差和低方差)。处理此问题的众多技术之一是交叉验证

了解交叉验证

假设在一个特定的数据集中,我们有 1000 条记录,我们train_test_split()在上面执行。假设我们有 70% 的训练数据和 30% 的测试数据random_state = 0,这些参数导致 85% 的准确度。现在,如果我们设置random_state = 50假设准确度提高到 87%。

这意味着如果我们继续选择不同random_state的精度值,就会发生波动。为了防止这种情况,一种称为交叉验证的技术开始发挥作用。

交叉验证的类型

1. 留交叉验证 (LOOCV) 

LOOCV中,我们选择 1 个数据点作为测试,剩下的所有数据都将是第一次迭代中的训练数据。在下一次迭代中,我们将选择下一个数据点作为测试,其余的作为训练数据。我们将对整个数据集重复此操作,以便在最终迭代中选择最后一个数据点作为测试。

通常,要计算迭代交叉验证过程的交叉验证 R²,您需要计算每次迭代的 R² 分数并取它们的平均值。

尽管它会导致对模型性能的可靠且无偏的估计,但它的执行计算成本很高。

2. K-fold 交叉验证

K-fold CV中,我们将数据集拆分为 k 个子集(称为折叠),然后我们对所有子集进行训练,但留下一个 (k-1) 个子集用于评估训练后的模型。

假设我们有 1000 条记录并且我们的 K=5。这个 K 值意味着我们有 5 次迭代。对于测试数据要考虑的第一次迭代的数据点数从一开始就是 1000/5=200。然后对于下一次迭代,随后的 200 个数据点将被视为测试,依此类推。

为了计算整体准确度,我们计算每次迭代的准确度,然后取其平均值。

我们可以从这个过程中获得的最小准确度将是所有迭代中产生的最低准确度,同样,最大准确度将是所有迭代中产生的最高准确度。

3.分层交叉验证

分层 CV是常规 k 折交叉验证的扩展,但专门针对分类问题,其中的分割不是完全随机的,目标类之间的比率在每个折中与在完整数据集中的比率相同。

假设我们有 1000 条记录,其中包含 600 条是和 400 条否。因此,在每个实验中,它都会确保填充到训练和测试中的随机样本的方式是,每个类的至少一些实例将是存在于训练和测试分裂中。

4.时间序列交叉验证

时间序列 CV中有一系列测试集,每个测试集都包含一个观察值。相应的训练集仅包含在形成测试集的观察之前发生的观察。因此,未来的观察不能用于构建预测。

预测精度是通过对测试集进行平均来计算的。此过程有时被称为“对滚动预测原点的评估”,因为预测所基于的“原点”会及时前滚。

使用 Scikit-learn 的实际实现的代码请关注我们或联系作者获取。

结论

在机器学习中,我们通常不想要在训练集上表现最好的算法或模型。相反,我们需要一个在测试集上表现出色的模型,以及一个在给定新输入数据时始终表现良好的模型。交叉验证是确保我们能够识别此类算法或模型的关键步骤。

责编:Challey
阅读全文,请先
您可能感兴趣
新款开发板售价仅为249美元,而上一代40 TOPS开发板售价为499美元,价格仅为上一代的一半。这使得Jetson Orin Nano Super成为“世界上最经济实惠的生成式AI计算机”,特别适合商业AI开发者、爱好者和学生使用。
面对AI时代带来的差异化趋势、软件应用及开发时间长、软硬件协同难、高复杂度高成本等挑战,国产EDA仍需不断探索和创新。
近年来,AWS还积极投资于人工智能(AI)、机器学习(ML)、大数据分析和边缘计算等前沿技术,以保持其在这些领域的竞争优势。
通过机器学习技术,EDA工具可以获取更精确的模型来预测设计中存在的问题,如布线拥塞、信号干扰、热效应等,从而为用户提供更准确快速的指导,避免后期返工。
这一新规则可能会引起美国在世界各地的合作伙伴和盟友的重大担忧,以及一些国家的不满,担心美国会充当单方面仲裁者,决定谁可以获得对AI至关重要的先进芯片。
股东诉讼指控英伟达的首席执行官黄仁勋隐藏了公司记录性收入增长主要由其旗舰产品GeForce GPU的挖矿销售驱动,而非游戏销售,导致投资者对公司的盈利来源和风险敞口产生错误认知。
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
投资界传奇人物沃伦·巴菲特,一位94岁的亿万富翁,最近公开了他的遗嘱。其中透露了一个惊人的决定:他计划将自己99.5%的巨额财富捐赠给慈善机构,而只将0.5%留给自己的子女。这引起了大众对于巴菲特家庭
12月18日,珠海京东方晶芯科技举行设备搬入仪式。插播:加入LED显示行业群,请加VX:hangjia188在10月31日,珠海京东方晶芯科技有限公司发布了Mini/Micro LED COB显示产品
有博主基于曝光的信息绘制了iPhone 17系列渲染图,对比iPhone 16系列,17系列最大变化是采用横置相机模组,背部DECO为条形跑道设计,神似谷歌Pixel 9系列,这是iPhone六年来的
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
扫描关注一起学嵌入式,一起学习,一起成长在嵌入式开发软件中查找和消除潜在的错误是一项艰巨的任务。通常需要英勇的努力和昂贵的工具才能从观察到的崩溃,死机或其他计划外的运行时行为追溯到根本原因。在最坏的情
近期,高科视像、新视通、江苏善行智能科技等企业持续扩充COB产能。插播:加入LED显示行业群,请加VX:hangjia188■ 高科视像:MLED新型显示面板生产项目(二期)招标12月18日,山西高科
 “ 担忧似乎为时过早。 ”作者 | RichardSaintvilus编译 | 华尔街大事件由于担心自动驾驶汽车可能取消中介服务,Uber ( NYSE: UBER ) 的股价在短短几周内从 202
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播
上个月,亿万富翁埃隆·马斯克谈到了年轻一代的生育问题。他强调生育的紧迫性,认为无论面临何种困难,生育后代都是必要的,否则人类可能会在无声中走向消亡。他认为人们对于生育的担忧有些过头,担心经济压力等问题
亲爱的企业用户和开发者朋友们距离2024 RT-Thread开发者大会正式开幕仅剩最后3天!还没报名的小伙伴,抓紧报名噢,12月21日不见不散!大会时间与地点时间:2024年12月21日 9:30-1