SEMulator3D中可视刻蚀特征提供了一种模拟与现实刻蚀腔室接近的刻蚀速率的方法。

在干法刻蚀中,由于与气体分子的碰撞和其他随机热效应,加速离子的轨迹是不均匀且不垂直的(图1)。这会对刻蚀结果有所影响,因为晶圆上任何一点的刻蚀速率将根据大体积腔室可见的立体角和该角度范围内的离子通量而变化。这些不均匀且特征相关的刻蚀速率使半导体工艺设计过程中刻蚀配方的研发愈发复杂。在本文中,我们将论述如何通过在SEMulator3D®中使用可视性刻蚀建模来弥补干法刻蚀这一方面的不足。

图1a:中性气体在腔室内随机流动的二维展示。气体的行进角度在图中描绘的所有方向上均等分布(图1a)。图1b:显示了带正电的离子和一个带负电的晶圆。离子会因电场而向下加速;然而,由于随机热效应和与其他离子或气体分子的碰撞,完美垂直轨迹无法实现。角速度分布可以近似为高斯函数(图1b)。

角相关刻蚀

确定材料刻蚀速率(ER)最简单的方法是在实际刻蚀前后测量晶圆的材料厚度。在刻蚀过程中使用平面晶圆可确保局部区域内的所有位置具有相同的张角和离子通量,这将带来可测量的统一刻蚀速率(图2a)。由于不同的刻蚀角度和不断变化的离子通量,在特征相关的刻蚀过程、例如沟槽和硬掩膜刻蚀中,确定该刻蚀速率是不可能的。SEMulator3D能够使用其“多刻蚀”功能模拟此类刻蚀。该软件可测量任意给定点的可见立体角并计算与该立体角范围内离子通量成比例的常态刻蚀量(图2c)。入射角的离子通量分布被假定为具有标准差的高斯分布。

图2a:在平面晶圆表面,每个位置(A、B、C、D)完全暴露在腔室中(开口角为180°),并且接收各个方向的全部离子通量。图2b:在凹坑和沟槽(E、F)底部,腔室视线内的角度范围减小。刻蚀速率可以表示为角度范围内的分布积分(垂直线之间曲线下的阴影区域)。

刻蚀配方剖析 

给定刻蚀腔室设置(射频功率和压力设置)的离子角分散可以凭经验用延时刻蚀样品的扫描电镜(SEM)图像确定,随后可以在SEMulator3D中模拟出虚拟腔室内的“虚拟”结构。虚拟实验设计可以在此模型中运行——通过改变角分散,直到虚拟刻蚀建模结果与实际SEM图像轮廓相匹配。图3展示的是,在SEMulator3D中将刻蚀样品的虚拟延时SEM与几个不同厚度的模型进行了比较,显示不同角分散值下的刻蚀形状和深度。SEMulator3D中的厚度设置说明的是在大体积腔室具有完全可视性的区域内理论上最大的材料去除。该设置将与实际刻蚀腔室中样品上的最大离子通量成比例。与实际刻蚀配方最匹配的模拟设置将在每个成比增加的厚度和时间上都具有与SEM图像相匹配的模拟轮廓(3D模拟图像)。开发与相应的实际刻蚀配方相匹配的模拟配方具有重大价值,它可用于预测样品的刻蚀时间演变,并使工艺探索期间在其他应用和结构中使用虚拟刻蚀模型成为可能。

图3:模拟实验设计与延时SEM的比较。模拟实验设计使用了恒定刻蚀量和不同的角分散(高斯分布的标准差),进行模拟并显示增量材料删除步骤失效。右侧的直方图说明了角度分布与软件中数值设置的相关性(不按比例)。刻蚀工艺的实际角分散是通过找到与刻蚀轮廓最匹配的模拟实验设计结果来确定的。

使用剖面配方优化 SADP 样品 

作为SEMulator3D中可视性刻蚀的示例,我们将使用剖面的二氧化硅 (SiO2)和氮化硅 (SiN) 刻蚀工艺模型来确定确保SADP柱孔关键尺寸的均匀性所需的最佳原子层沉积 (ALD) 厚度(见图4)。该样品由50nm SiN层和100nm高的碳芯轴组成,芯轴直径20nm,水平间距80nm。最终目标是使用SADP创建一个40nm间距的孔阵列。此剖面SiN / SiO2刻蚀的角分散为0.08,对所有异物的选择比为0.3。使用ALD形成的孔不对称形状呈现为带有圆形开口的菱形,与在芯轴上形成的圆柱形孔形成对比。由于此菱形孔的大小可以通过ALD进行调整,我们需要确定ALD的临界厚度,刻蚀过程中这一厚度的ALD下进入此菱形孔区域的离子总量与进入圆柱区域的离子总量相等,这将带来相等的刻蚀深度和形状。

图4:孔阵列上的菱形SADP,芯轴直径20nm,水平间距80nm。处于扩张的向外沉积形成了孔,这些孔又形成菱形并具有圆形开口。使用剖面SiO2刻蚀,可以探索不同ALD厚度刻蚀孔的形状。

SEMulator3D中可以通过ALD厚度实验设计确定这一最佳厚度。该模拟的结果如图5所示,刻蚀自上而下的形状和底部横截面也可见。随着ALD厚度的增加,SiN /基底界面处的孔形状从方形变为圆形,并且逐渐变小。在足够的ALD厚度下,菱形孔的尖端可视度有限,这会导致较低的刻蚀速率且刻蚀保持圆形。在23.5nm的ALD厚度下得到了此次剖面SiO2SiN刻蚀工艺最均匀的孔形状。

结论

SEMulator3D中可视刻蚀特征提供了一种模拟与现实刻蚀腔室接近的刻蚀速率的方法。SEMulator3D可视性刻蚀设置,例如角分散和选择比,可以与延时SEM图像进行比较,以验证工艺模型。之后,该工艺模型可以用来探索刻蚀配方变化对不同结构和不同刻蚀次数的影响,免去实际晶圆制造和测试的时间和成本。

阅读全文,请先
您可能感兴趣
马来西亚政府也希望与Arm的交易将使国内生产商扩大规模,创建十家本地芯片公司,年收入总额达约200亿美元,将助GDP增加一个百分点。
全球前十大高产机构中,9家为中国机构(如中国科学院、清华大学等)。其中,中国科学院以 2018-2023 年期间发布的 14,387 篇文章位居榜首。
现任美国总统特朗普却不怎么认可,一直认为关税是更好的手段。这一观点使得曾轰动半导体产业界的政策立法正遭受继续实施的挑战。
目前,CPO技术在多个领域展现出广泛的应用前景,比如数据中心、高性能计算(HPC)、人工智能、通信系统、传感器网络和生物医学等。
此次追加的 1000 亿美元投资将用于建设全链条的先进半导体产能,涵盖芯片设计、制造、封装和测试等环节。
随着全球数字化转型市场蓬勃发展,云计算、人工智能、大数据、5G等技术的应用范围不断扩大,全球企业的数字化转型已经来到了持续发展阶段,这也促使了企业不断加大其在数字化转型的投入。其中 AI、机器视觉和 RFID 等先进技术在实现高效生产物流方面发挥着关键作用。
TEL宣布自2025年3月1日起,现任TEL中国区地区总部——东电电子(上海)有限公司高级执行副总经理赤池昌二正式升任为集团副总裁,同时兼任东电电子(上海)有限公司总裁和东电光电半导体设备(昆山)有限公司总裁。
预计在2025年,以下七大关键趋势将塑造物联网的格局。
领域新成果领域新成果4月必逛电子展!AI、人形机器人、低空飞行、汽车、新能源、半导体六大热门新赛道,来NEPCON China 2025一展全看,速登记!
本次股东大会将采取线上和线下相结合的混合形式召开,股东们可选择现场出席或线上参会。
千万级中标项目5个,百万级中标项目12个。文|新战略根据公开信息,新战略移动机器人产业研究所不完全统计,2025年2月,国内发布35项中标公告,披露总金额超15527.01万元。(由新战略移动机器人全
Mar. 5, 2025 产业洞察根据TrendForce集邦咨询最新研究,TSMC(台积电)近日宣布提高在美国的先进半导体制造投资,总金额达1650亿美元,若新增的三座厂区扩产进度顺利,预计最快20
差分运算放大电路,对共模信号得到有效抑制,而只对差分信号进行放大,因而得到广泛的应用。差分电路的电路构型    上图是差分电路。    目标处理电压:是采集处理电压,比如在系统中像母线电压的采集处理,
新思科技与国际半导体产业协会基金会(SEMI 基金会)近日在新思科技总部宣布签署一份谅解备忘录(MoU),携手推动半导体芯片设计领域的人才发展。据预测,到 2030 年,全球半导体行业将需要新增 10
‍‍近几年,随着Mini/Micro LED技术的高速发展,LED产业呈现几大发展趋势,如LED显示间距持续缩小、LED芯片持续微缩化、产品、工艺制造环节更为集成,以及RGB 封装与COB 降本需求迫
插播:历时数月深度调研,9大系统性章节、超百组核心数据,行家说储能联合天合光能参编,发布工商业储能产业首份调研级报告,为行业提供从战略决策到产品方向、项目资源的全维参考!点击下方“阅读原文”订阅刚开年
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----来源: 逍遥设计自动化申
据报道,小米集团总裁卢伟冰在西班牙巴塞隆纳的全球发表会上表示,小米汽车计划于2027年进军海外市场。小米的立足之本在于深耕本土市场,作为一家中国车企,唯有在国内市场站稳脚跟,方能谈及海外扩张。因此,小
今日光电     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来---- 来源:时光沉淀申明:感
2025年3月11-13日,亚洲激光、光学、光电行业年度盛会的慕尼黑上海光博会将在上海新国际博览中心-3号入口厅N1-N5,E7-E4馆盛大召开。本次瑞淀光学展示方案有:■ MicroOLED/Min