我认为最大的性能突破在于在室温下不需要利用电子雪崩效应实现精准的单光子探测和光子计数,在实现千万高像素的同时不影响功耗和画幅帧数。

近日,Gigajot Technology公司发布了首批量子图像传感器(Quanta Image Sensor,QIS)产品,有人认为这标志着固态成像新时代的到来,有望取代传统的CMOS图像传感器。

其实早在2011年左右Eric Fossum教授(也是Gigajot的联合创始人)刚刚发布量子传感器的研究时,有人认为5年内手机就会用上量子图像传感器,CMOS或将成为历史,现在回过头来看这个预测还是过于乐观了一些。

对消费级量子图像传感器有兴趣的朋友,或许还会记得早在2017年的时候,苹果收购了号称替代CMOS的量子薄膜摄像头厂商InVisage Technology,试图开发自己的相机模块。

InVisae是宣称采用量子薄膜(QuantumFilm)、而不是硅材料来捕捉光线的图像传感器厂商,推出的是量子点图像传感器(Quantumdotimaesensor,QDIS),而恰巧我在2015年还代表EDN参观过InVisae在台湾的工厂,当时InVisage的传感器得到很大的关注,但2017年被苹果收购后似乎就销声匿迹了。

虽然苹果始终没有公开过相关的技术进展,但业界还是认为“苹果决定停止开发量子点图像传感器,因为它对于大规模生产来说太贵了。”一些蛛丝马迹也验证了该消息的可靠性,例如InVisage的CEO在2017年7月到2019年1月之间在苹果公司从事了一段时间“特殊项目的并购整合”后,也离开了苹果。

自此量子薄膜摄像头就再也没有过消息露出。这是连苹果都放弃了的技术路线吗?此次Gigajot推出的QIS是否是基于同样的技术路线?这批小批量商业化的QIS能否获得商业市场的接纳?

QIS与QDIS的不同技术路线

EDN记者联系到了Gigajot公司的CTO Jiaju Ma,他指出“我们做的QIS和Invisage所做的Quantum dot是基于完全不同的技术概念。Quantum dot主要的创新在于新材料,新工艺,而我们的创新是基于CMOS传统工艺,但在半导体仪器和电路的设计上实现了革新与突破。”

【注:Gigajot 由研究人员 Saleh Masoodian (CEO)和 Jiaju Ma(CTO)在新罕布什尔州Dartmouth College的 Thayer 工程学院分拆出来后共同创立。Gigajot 团队早在 2017 年公司成立之前就发明并开发了量子图像传感器 (QIS)。】

关于QIS的概念早在2005年就有提出,但真正的研究始于2011年Gigajot的创始团队在Dartmouth College开展的博士研究。

Gigajot是第一个把QIS产品化的公司,但Ma仍然向EDN分享了在学术界其他做类似研究与开发的团队,“比如瑞士的EPFL的团队在做基于SPAD的QIS,荷兰University of Delft有团队在做相似概念的极低噪声的图像传感器。在近期Hamamastu(日本滨松)也推出了类似QIS概念的相机产品。”

此次Gigajot推出的量子图像传感器的一个重要的突破是,可以在室温下实现精准光子计数。“我认为最大的性能突破在于在室温下不需要利用电子雪崩效应实现精准的单光子探测和光子计数,在实现千万高像素的同时不影响功耗和画幅帧数。光子是光信号的最小单元,能准确的计量光子代表在极暗光照条件下也能实现高质量的成像。”Ma向EDN指出。

以往,光子计数和可靠的光子数分辨(PNR),在高度受控的实验室环境中只有利用深度制冷EMCCD技术才能部分实现,而现在Gigajot可以使用在室温下工作的紧凑型量子相机就能实现,并具有更高的分辨率和速度。

针对这一突破,罗彻斯特理工学院探测器中心和未来光子计划主任Don Figer的评价是:“在室温下进行光子计数的能力,改变了我们在天体物理学和量子信息科学方面的研究工作的游戏规则(game changer)”。

在判定量子图像传感器商用前景之前,我们先了解一下该技术原理。

什么是量子图像传感器(QIS)

传统的 CMOS 图像传感器通过使用光电二极管和光电晶体管将入射光转换为电信号来工作,然后这些信号被放大并通过软件转换成像素。传统的图像传感器最大缺点之一是传感器内部噪声过大。 

在低照度条件下,光子产生的电信号极弱,从而会被传感器的内部噪声覆盖而无法被准确地呈现。

量子图像传感(Quanta Image Sensor,QIS)是不同的。

量子图像传感利用创新的半导体仪器设计在每个像素元件中实现了极小的输出电容,从而极大地放大了每个光子产生的电信号。

由于这种极高的信号放大率,与CMOS传感器相比,量子图像传感器的相对噪声降低了5到10倍,从而在室温条件下实现了准确的单光子探测和光子数分辨。

图:QIS成像过程。QIS的基本成像原理由彩色滤波器阵列、光子泊松分布、读取噪声和模数转换器(ADC)组成。 

QIS能以比其他CMOS技术更高的保真度在更小的像素架构中记录低光环境。

QIS芯片内的最小单元称为“映像点(jots)”——这或许也是Gigajot得名的原因,而不是“像素(pixels)”,每个映像点(jots)都可以探测到单个光子。

第一代QIS原型由Ma及Gigajot的创始团队于2017年发表。但是,QIS之前仅限于实验室设置。 

此次推出的两款图像传感器是世界上第一个商用的可实现室温光子计数的CMOS图像传感器。这些传感器声称具有行业领先的暗电流和读取噪声参数规范,这对低照度成像和高动态范围成像至关重要。

Gigajot两款量子图像传感器的性能

这批基于CMOS的量子图像传感器采用Gigajot专利传感器结构和像素设计,实现了低噪声,从而能够准确探测单个光子。在室温下以全速工作状态进行光子计数,并具有高动态范围。

与传统的小像素CMOS图像传感器相比,这批量子图像传感器的读出噪声性能提升了5~10倍,可实现以前无法实现的超低照度成像,可以面向高性能成像应用,例如科学、医疗、国防、工业和航天。

1600万像素的GJ01611产品采用1.1微米像素,实现室温下0.19电子(e-)的读出噪声和0.09电子/像素/秒(e-/pix/s)的暗电流,而另外一款400万像素GJ00422产品采用2.2微米像素,实现0.27e-的读出噪声,单次曝光高动态范围为100dB。

图:来自具有 0.12 e-rms 读取噪声和 2.3 e-/像素平均信号电平的像素的光子计数直方图,显示出明显离散的光电子数。传感器数据与理论泊松-高斯模型非常匹配。

利用先进的堆叠式CMOS背照式(BSI)传感器工艺技术,量子图像传感器能够在室温下进行光子计数,而无需复杂的冷却系统,能在更小的像素尺寸下具有更高的灵敏度,并且比正面照明制造效率更高。

图:QIS产品在0.01lux的极低照度条件下彩色样图。图片来自Ma等人。

此外,单次曝光高动态范围减轻了由传统的多曝光HDR技术产生的运动伪影。

Gigajot相机开发工具套件(QIS CDK)支持GJ01611和GJ00422两款产品评估和相机开发。QIS CDK现已上市,具有SuperSpeed USB 3.0接口和用户友好的软件,并且外形小巧。

 

QIS CDK具有“开箱即用”的真正光子计数功能,可在数分钟内完成设置,以进行评估或直接整合到客户系统中。

产、工艺、及目标应用

QIS现在处于小规模量产阶段,所用工艺为TSMC stacked CMOS image sensor 工艺。

QIS生产所用的工艺与传统的CIS十分类似,所以生产的成本并没有差距。通常,产品价格还取决于具体的应用领域和生产量。 

“半导体芯片的制造成本往往与生产量直接挂钩,目前推出的产品主要用于高性能小众应用,因为相比消费级电子生产量小,成本也较高,这一点与同级别的CIS产品类似。”Ma表示。

“那QIS会用于消费电子,如手机吗?”这是我提出的最后一个问题。

“我认为最终QIS会用于民用消费电子,例如手机。现有的技术和性能可被转化到民用级别的消费电子产品中,因为生产量量很大,成本自然会降低到与同级别的CIS类似,同时提供卓越的夜光照相和高动态范围性能。”Ma表示。

 

 

 

 

 

 

 

 

 

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
在11月26日的华为Mate品牌盛典上,华为Mate 70系列正式亮相。余承东表示,Mate一直被模仿从未被超越,“不断创新才能引领行业,靠抄袭是没有未来的,能超越Mate的只有Mate!”
与前代iPhone 15 Pro Max的BOM成本453美元对比,iPhone 16 Pro Max上涨32美元,涨幅约为7%。iPhone 16标准版方面,物料成本达到了416美元……
iPhone 16系列一经发售,除了被拆解分析机构盯上,也因为近期的黎巴嫩寻呼机爆炸事件,被一些造谣者盯上。网上出现了大量“禁止携带苹果手机”的通知,正好多家机构日前对iPhone 16进行了拆解,我们借此文还看看里面有没有引爆装置……
拥有百万粉丝的网红博主@杨长顺维修家 第一时间对Mate XT进行了拆解,并且边拆边不断对内部工艺表示惊叹。
9月10日,苹果发布了一系列新品,包括iPhone 16系列手机、Apple Watch Series 10智能手表和AirPods 4耳机。发布会后网上响起了一片吐嘈声,带着这些吐槽,我们来看看这次苹果到底有没有新玩意……
九州岛是日本半导体产业重镇,而效仿美国硅谷的名称,被誉为日本的“硅岛”。该地区包括福冈、大分、宫崎、佐贺、长崎、熊本以及鹿儿岛等七个县,汇聚了超过1000家半导体相关厂商……
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
今日,长飞先进武汉基地建设再次迎来新进展——项目首批设备搬入仪式于光谷科学岛成功举办,长飞先进总裁陈重国及公司主要领导、嘉宾共同出席见证。对于半导体行业而言,厂房建设一般主要分为四个阶段:设备选型、设
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
来源:观察者网12月18日消息,自12月2日美国发布新一轮对华芯片出口禁令以来,不断有知情人士向外媒透露拜登政府在卸任前将采取的下一步动作。美国《纽约时报》12月16日报道称,根据知情人士以及该报查阅
12月18 日,据报道,JNTC与印度Welspun BAPL就车载盖板玻璃的开发及量产签订了投资引进业务合作备忘录(MOU)。资料显示,JNTC是韩国的一家盖板玻璃厂商。Welspun的总部位于印度
“ 洞悉AI,未来触手可及。”整理 | 美股研究社在这个快速变化的时代,人工智能技术正以前所未有的速度发展,带来了广泛的机会。《AI日报》致力于挖掘和分析最新的AI概念股公司和市场趋势,为您提供深度的
阿里资产显示,随着深圳柔宇显示技术有限公司(下称:“柔宇显示”)旗下资产一拍以流拍告终,二拍将于12月24日开拍,起拍价为9.8亿元。拍卖标的包括位于深圳市龙岗区的12套不动产和一批设备类资产,其中不
扫描关注一起学嵌入式,一起学习,一起成长在嵌入式开发软件中查找和消除潜在的错误是一项艰巨的任务。通常需要英勇的努力和昂贵的工具才能从观察到的崩溃,死机或其他计划外的运行时行为追溯到根本原因。在最坏的情
LG Display  12月18日表示,为加强OLED制造竞争力,自主开发并引进了“AI(人工智能)生产体系”。“AI生产体系”是AI实时收集并分析OLED工艺制造数据的系统。LG Display表
 “ AWS 的收入增长应该会继续加速。 ”作者 | RichardSaintvilus编译 | 华尔街大事件亚马逊公司( NASDAQ:AMZN ) 在当前水平上还有 38% 的上涨空间。这主要得益
亲爱的企业用户和开发者朋友们距离2024 RT-Thread开发者大会正式开幕仅剩最后3天!还没报名的小伙伴,抓紧报名噢,12月21日不见不散!大会时间与地点时间:2024年12月21日 9:30-1