2020年2月,EE Times评选出“十大AI芯片创企”,其中来自英国的Graphcore凭借其为AI计算而生研发的IPU获选。7月,Graphcore在布里斯托和北京同步推出了两款硬件产品:第二代IPU芯片Colossus MK2 GC200 IPU(简称MK2 IPU),以及包含四颗MK2 IPU,可用于大规模集群系统的IPU-Machine:M2000 (IPU-M2000)。最近,Graphcore公开了IPU-M2000的应用性能测试。这次Benchmark显示,相比A100,在IPU-M2000上,ResNet的吞吐量提升了4倍,ResNeXt的吞吐量提升了5.4倍,EfficientNet的吞吐量达到了18倍,Deep Voice 3达到了13倍。

2020年2月,EE Times评选出“十大AI芯片创企”,其中来自英国的Graphcore凭借其为AI计算而生研发的IPU获选。7月,Graphcore在布里斯托和北京同步推出了两款硬件产品:第二代IPU芯片Colossus MK2 GC200 IPU(简称MK2 IPU),以及包含四颗MK2 IPU,可用于大规模集群系统的IPU-Machine:M2000 (IPU-M2000)。最近,Graphcore公开了IPU-M2000的应用性能测试。这次Benchmark显示,相比A100,在IPU-M2000上,ResNet的吞吐量提升了4倍,ResNeXt的吞吐量提升了5.4倍,EfficientNet的吞吐量达到了18倍,Deep Voice 3达到了13倍。

第二代IPU-M2000应用测试性能

IPU-M2000是继英伟达的GPU和谷歌的TPU之后,世界上第三个公开发布的能够训练BERT-Large模型的AI处理器产品。最近公布的应用性能测试中表现优异。

 

这次发布的基于MK2 IPU的IPU-M2000的Benchmark覆盖了很多模型的训练结果,包括典型的CV模型ResNet、基于分组卷积的ResNeXt、EfficientNet、语音模型、BERT-Large等自然语言处理模型,MCMC等传统机器学习模型。其中BERT-Large这样的大型模型或是MCMC这样的传统模型,在一台IPU-POD64这样的系统级产品中训练,相比在2台DGX-A100上训练,也能够实现一定的性能收益。

在不同的机器学习训练中,最新IPU-M2000和IPU-POD的具体性能指标

上图展示了BERT-Large端到端的训练时间性能,最上方的是DGX-A100的性能,端到端的训练时间是69.5小时,训练的数据集是维基百科的英文语料,其他训练的参数,基本上是摘录了英伟达的数据。下方是对2个DGX-A100和3个DGX-A100做的一个线性扩展的估计。众所周知,从一个系统到两个系统到三个系统,基本是无法达到完全线性扩展的,所以这边也显示不出A100最佳和最高的性能可能性。最下方可以看到,在IPU-POD64上,PopART BERT-Large的端到端的训练时间只要13.2小时。如此看来,相比1个DGX-A100,BERT-Large能在IPU-POD64上实现5.3倍的提升,相比3个DGX-A100,则能够实现1.8倍的提升。上图右侧有一个价格/功率指示性的比对关系。1个IPU-POD64和3个DGX-A100的功率和价格基本相同,但却能够实现接近两倍的性能提升,这就是非常显著的性能优势。

推理优势

此前,EETC曾发表过《AI的训练与推理,会往哪个方向发展?》,文中提到:Graphcore联合创始人兼CEO Nigel Toon先生数度谈到AI“训练(training)和推理(inference)技术本质上没有什么区别”。Nigel Toon表示:训练和推理不应做过分严格的区分,未来部署机器智能才可能是正确的方向。

下面我们看看第二代IPU-M2000在推理方面的优势。

EfficientNet是2019年谷歌开发的一个模型。EfficientNet的模型尺寸有8个等级,B0是一个模型尺寸比较小的模型、模型尺寸最大的是B7,大概是60兆-70兆,B0是5兆的参数量级。

上图横坐标表示吞吐量、纵坐标表示时延。在PyTorch和TensorFlow两种不同的框架下,EfficientNet-B0在1台IPU-M2000上的吞吐量大概可以达到以“万”为单位的级别,时延远远小于5毫秒。而在最新的GPU上,即使在时延最大化的情况下,它的吞吐量也远远小于以“万”为单位的吞吐量级,充分凸显了IPU所具备的时延优势。

   

图中左上角展示了Deep Voice 3的训练性能,该模型训练在IPU上的吞吐量能够达到GPU的13.6倍。右上角展示的是BERT-Large推理上的性能,在双方都处于最低时延的情况下,在IPU上,与A100相比,BERT-Large能够实现3.4倍吞吐量的提升。大家可能会疑惑batch-size比较小的时候A100没有打满,我们把batch-size打大的时候、A100在batch-size可能是等于8的情况之下,它的吞吐量其实是有显著提升的。图中最上面红点,展示的是该模型在IPU-M2000上的最高的吞吐量和时延的性能,图中可以看到该模型在IPU-M2000上的吞吐量能够达到三千多。

左下角是LSTM推理的性能展示显示,IPU在时延和吞吐上这两方面都是有相当优势的。右下角展示的是MCMC概率模型训练的性能,MCMC模型是用来估计股票价格的一个评估工具。评估一个股票是不是能够超出大盘的基本股价时,一般都是用一个Alpha因子来表示。如图所示,该模型的训练在IPU-M2000上,比在最新GPU上快大概17倍。

计算机视觉

计算机视觉方面,左边是ResNet和EfficientNet的训练性能展示,右边是两个模型的推理性能展示。ResNet-50是一个中等规模的模型、拥有大概20兆的训练参数。EfficientNet-B4也拥有大概20兆的训练参数。两者参数量差不多,但是它们的性能表现有所不同。训练方面,ResNet-50相比A100,大概能实现2.6倍的性能提升,而EfficientNet相比A100能够实现10倍左右的性能提升。这是因为ResNet-50基本上是由卷积组成的,而EfficientNet是由可分离深度卷积组成的,它的卷积核比较小,在调度上的开销和算子的利用率在IPU上可能会有更好的体现。如果算子小、算子比较多,在GPU上的调度开销也会引入跟HDM内存上数据交互的开销,可能会导致了它们的性能大大的折损。这也说明了,在新一代的模型上IPU其实更具普适性。

推理方面,ResNet-50和EfficientNet-B0在PyTorch和TensorFlow的性能表现是不相上下的。这也说明了Poplar SDK 1.4中引入的对于PyTorch的支持,在模型运行中没有性能上的损耗。

IPU-POD64的横向与纵向扩展

IPU-POD64是16台IPU-M2000组成的一个解决方案。Graphcore已经在全球范围之内实现了该方案的交付。该方案实现了x86和IPU计算的解耦。

IPU-POD64是目前市场上非常少见的,可以同时将纵向扩展和横向扩展都做得非常好的AI计算平台产品。

纵向扩展是指IPU-POD64可以实现从一台IPU-M2000到一个IPU-POD16(4台IPU-M2000),再到一个IPU-POD64(16台IPU-M2000)进行软件透明扩展。也就是说,编译好的软件在一个IPU-M2000里能用,如果您希望获得16倍的性能,扩展到IPU-POD64,同样的软件也能够运行使用。与之相比,如果使用DGX-A100这样的机器,想要从1个DGX-A100扩展到4个DGX-A100,需要做大量的软件改造。有一个概念叫“分布式的机器学习”,就是要用一个分布式的机器学习框架,对您的算法模型进行相应的改造之后才能够从1个DGX-A100扩展到4个DGX-A100。

据沟通,很多头部互联网公司认为当前绝大部分单一工作负载最大不会超过IPU-POD64。也就是说,对于当前最主流的工作负载来说,1个IPU-POD64就能够让绝大多数工程师不需要担心分布式的机器学习、分布式的机器学习框架、分布式的通信,只需一个IPU-POD64就可以进行软件透明扩展。

纵向扩展不代表不能做横向扩展。从横向扩展的角度来看,多个IPU-POD64最多可以支持64000个IPU组成的AI计算集群。所以,以最小的IPU-M2000作为一个计算单元,Graphcore可以在横向扩展、纵向扩展两个维度,获得非常好的超级AI计算集群。

Graphcore最新动态

据EETC了解,Graphcore最近有一系列的动作,包括Graphcore与阿里云HALO的合作,发布Poplar SDK 1.4加入MLPerf管理机构MLCommons等等。

阿里云在GitHub上开源了HALO。Graphcore是阿里云HALO/ODLA的共建合作伙伴之一,目前在阿里云HALO的GitHub里已经有IPU的完整支持代码库odla_PopArt。这意味着在GitHub下载HALO开源代码就已经可以在IPU上使用了。目前,Graphcore和阿里云也在基于HALO做一些共同的客户落地的事情。

Diagram, timelineDescription automatically generated

Graphcore与阿里云HALO展开了非常紧密的合作。HALO的初衷和NNFusion一样,想做一个整体的框架,向上跨AI框架,向下通过ODLA这样一个通用的硬件接口对接不同的硬件厂商的芯片。他们的初衷多是希望处理不同模型,比如TensorFlow模型、ONNX的模型、或是PyTorch的模型时,能够将它一键式地在系统上或者是集群上运行起来。

此外,Graphcore最近发布了Poplar SDK 1.4,并同时发布了面向IPUPyTorch产品级版本。

同时Graphcore于近期宣布,加入MLPerf管理机构MLCommons。

Graphcore将在2021年上半年正式参与MLPerf性能测试,其IPU-POD64也已经在全球范围内发货,包括中国、北美、欧洲以及其它区域。

最新消息:

2021年10月22日,Graphcore发布了迄今为止发布的最大型的最新产品IPU-POD128和IPU-POD256,分别能够提供32 petaFLOPS和64 petaFLOPS的AI计算。

详情见:https://www.eet-china.com/info/64725.html

 

本文为EET电子工程专辑原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
阅读全文,请先
您可能感兴趣
面对AI时代带来的差异化趋势、软件应用及开发时间长、软硬件协同难、高复杂度高成本等挑战,国产EDA仍需不断探索和创新。
股东诉讼指控英伟达的首席执行官黄仁勋隐藏了公司记录性收入增长主要由其旗舰产品GeForce GPU的挖矿销售驱动,而非游戏销售,导致投资者对公司的盈利来源和风险敞口产生错误认知。
今年初的GTC上,黄仁勋就说机器人的“ChatGPT时刻”要来了。也就是说这波AI驱动的机器人热潮要来了...最近的ROSCon China 2024大会似乎也能看到这种迹象...
近日,华为终端BG CEO何刚在和紫牛基金创始合伙人张泉灵的对话中表示,华为Mate 70系列每一颗芯片都有国产的能力。此外,日前在深圳宝安中学的一场讲座中,华为终端BG 董事长余承东也自豪地宣布Mate70实现了芯片的100%国产化。
华为Mate 70系列中的Mate 70搭载了麒麟9010芯片,而Mate 70 Pro/Pro+/RS则首发了麒麟9020芯片。近日,百万粉丝的网红博主@杨长顺维修家 对华为Mate 70 RS进行了拆解……
Intel刚刚发布了新一代桌面显卡Arc B580和B570,关键是还支持AI帧生成和低延迟...
目前,智能终端NFC功能的使用频率越来越高,面对新场景新需求,ITMA多家成员单位一起联合推动iTAP(智能无感接近式协议)标准化项目,预计25年上半年发布1.0标准,通过功能测试、兼容性测试,确保新技术产业应用。
中科院微电子所集成电路制造技术重点实验室刘明院士团队提出了一种基于记忆交叉阵列的符号知识表示解决方案,首次实验演示并验证了忆阻神经-模糊硬件系统在无监督、有监督和迁移学习任务中的应用……
C&K Switches EITS系列直角照明轻触开关提供表面贴装 PIP 端子和标准通孔配置,为电信、数据中心和专业音频/视频设备等广泛应用提供创新的多功能解决方案。
投身国产浪潮向上而行,英韧科技再获“中国芯”认可
来源:苏州工业园区12月17日,江苏路芯半导体技术有限公司掩膜版生产项目迎来重要进展——首批工艺设备机台成功搬入。路芯半导体自2023年成立以来,专注于半导体掩膜版的研发与生产,掌握130nm至28n
投资界传奇人物沃伦·巴菲特,一位94岁的亿万富翁,最近公开了他的遗嘱。其中透露了一个惊人的决定:他计划将自己99.5%的巨额财富捐赠给慈善机构,而只将0.5%留给自己的子女。这引起了大众对于巴菲特家庭
‍‍12月18日,深圳雷曼光电科技股份有限公司(下称“雷曼光电”)与成都辰显光电有限公司(下称“辰显光电”)在成都正式签署战略合作协议。双方将充分发挥各自在技术创新、产品研发等方面的优势,共同推进Mi
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
万物互联的时代浪潮中,以OLED为代表的新型显示技术,已成为人机交互、智能联结的重要端口。维信诺作为中国OLED赛道的先行者和引领者,凭借自主创新,实现了我国OLED技术的自立自强,成为中国新型显示产
12月18 日,据报道,JNTC与印度Welspun BAPL就车载盖板玻璃的开发及量产签订了投资引进业务合作备忘录(MOU)。资料显示,JNTC是韩国的一家盖板玻璃厂商。Welspun的总部位于印度
在上海嘉定叶城路1688号的极越办公楼里,最显眼的位置上,写着一句话:“中国智能汽车史上,必将拥有每个极越人的名字。”本以为这句话是公司的企业愿景,未曾想这原来是命运的嘲弄。毕竟,极越用一种极其荒唐的
点击蓝字 关注我们电网和可再生能源系统向着更智能、更高效的方向发展助力优化能源分配构建更加绿色和可靠的能源未来12 月 24 日 上午 9:30 - 11:302024 德州仪器新能源基础设施技术直播
亲爱的企业用户和开发者朋友们距离2024 RT-Thread开发者大会正式开幕仅剩最后3天!还没报名的小伙伴,抓紧报名噢,12月21日不见不散!大会时间与地点时间:2024年12月21日 9:30-1
上个月,亿万富翁埃隆·马斯克谈到了年轻一代的生育问题。他强调生育的紧迫性,认为无论面临何种困难,生育后代都是必要的,否则人类可能会在无声中走向消亡。他认为人们对于生育的担忧有些过头,担心经济压力等问题