社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
IIC Shanghai 2023
2023(第四届)国际 AIoT 生态发展大会
全球 MCU 生态发展大会
第四届临港半导体产业高峰论坛暨司南科技奖颁奖盛典
IIC Shenzhen 2023
第四届中国国际汽车电子高峰论坛
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
帖子
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
×
提示!
您尚未开通专栏,立即申请专栏入驻
帖子
博文
用户
芯语
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
抑制方法
哈尔滨工业大学徐永向教授团队:永磁同步电机高频PWM噪声抑制方法综述
Wentao Zhang, Haiyang Gao, Yongxiang Xu, Jibin Zou. Review of High-frequency PWM Acoustic Noise Suppression Methods for PMSMs[J]. Chinese Journal of Electrical Engineering, 2024, 10(3): 94-109. DOI: 1
电动车千人会
2024-11-29
267浏览
应用笔记|SiC模块并联驱动振荡的抑制方法
SiC MOSFET与传统Si器件相比,具有高电压、大电流、高速驱动、低损耗、高温稳定等诸多优点,是新一代器件。近年来,利用这些优异特性,作为向大功率发展的电动汽车 (EV) 的牵引逆变器电路,并联连接多个 SiC MOSFET元件的功率模块被使用的情况越来越多。另一方面,由于并联使用这样的高速元件,有时会发生元件间的并联驱动振荡 (以下简称振荡)。发生振荡的话元件有破坏的危险,因此抑制对策是市场
罗姆半导体集团
2024-11-27
165浏览
文章分享:BUCK开关节点震荡抑制方法(两篇)
一、分享内容简介 有人在问BUCK的开关震荡抑制问题,这里分享两篇芯龙半导体的文章,介绍了开关节点产生震荡的机理,另外还有输入C1电容的选择以及位置的放置,以及不同PCB布局的寄生电感大小,通过RC吸收抑制震荡的计算方法。二、内容截图 如下是理想的同步降压转换器拓扑与实际电路中的同步降压转换器的拓扑: 如下是开关管开关时的电流路径,包含了等效的电感与等效阻
硬件之路学习笔记
2024-07-05
472浏览
文章分享:BUCK开关节点震荡抑制方法(两篇)
一、分享内容简介 有人在问BUCK的开关震荡抑制问题,这里分享两篇芯龙半导体的文章,介绍了开关节点产生震荡的机理,另外还有输入C1电容的选择以及位置的放置,以及不同PCB布局的寄生电感大小,通过RC吸收抑制震荡的计算方法。二、内容截图 如下是理想的同步降压转换器拓扑与实际电路中的同步降压转换器的拓扑: 如下是开关管开关时的电流路径,包含了等效的电感与等效阻
硬件之路学习笔记
2024-05-22
688浏览
R课堂|SiCMOSFET:栅极-源极电压的浪涌抑制方法-总结
本文是“SiC MOSFET:栅极-源极电压的浪涌抑制方法”系列文章的总结篇。介绍SiC MOSFET的栅极-源极电压产生的浪涌、浪涌抑制电路、正电压浪涌对策、负电压浪涌对策和浪涌抑制电路的电路板布局注意事项。桥式结构SiC MOSFET的栅极信号,由于工作时MOSFET之间的动作相互关联,因此导致SiC MOSFET的栅-源电压中会产生意外的电压浪涌。这种浪涌的抑制方法除了增加抑制电路外,电路板
罗姆半导体集团
2023-04-13
883浏览
开关电源EMI产生原因有哪些,有哪些抑制方法
一、前言随着开关电源的体积越来越小、功率密度越来越大,EMI控制问题成为开关电源稳定性的一个关键因素。采用EMI滤波技术、屏蔽技术、密封技术及接地技术等,可以有效地抑制、消除干扰源及受扰设备之间的祸合和辐射,切断电磁干扰的传播途径,从而提高开关电源的电磁兼容性。开关电源是一种应用功率半导体器件并综合电力变换技术、电子电磁技术、自动控制技术等的电力电子产品。开关电源瞬态响应较差、易产生电磁干扰(EM
电子芯期天
2022-02-07
2546浏览
中电科58所解析封装设计中辐射EMI产生机理及其抑制方法
集成电路工艺进步和设计技术发展促使芯片功能日益复杂,集成度越来越高。在高速数字系统中,电磁干扰(EMI)和信号完整性及电源完整性密切相关,相互影响,例如:信号过孔穿过参考平面时不仅会引起高速信号边沿的畸变和退化,而且有可能由于阻抗突变和回路面积增大向电源/地平面注入足够能量从而产生谐振,引起较大的EMI。在芯片封装时减小EMI噪声,可以极大地减轻后续PCB级和整机的电磁兼容(EMC)设计压力,从而
MEMS
2021-12-03
1772浏览
开关电源纹波测量和抑制方法
开关稳压电源非常关键的一个指标就是纹波,它主要是由开关变换的方式导致的,也因纹波的存在会影响到后续电路的工作,尤其是在对纹波比较敏感的场合下。如何正确测量开关电源纹波?如何有效抑制开关电源的纹波以达到供电电路的要求?这些都是PCB设计工程师需要掌握的重要技能。开关电源纹波的测量要有效降低开关电源输出纹波我们首先得有个比较靠谱的测试方法,由于测试方法的问题而导致的假波形是整改不好的基本要求:使用示波
贸泽电子设计圈
2019-04-29
1812浏览
【纯干货】高密集型尖峰群噪声抑制方法
问题描述:在某些频段内出现无任何规律可寻的高密集型尖蜂群噪声(如下图)。问题定位:对于这些噪声,单板上没有任何时钟频率和其有关系,并且非常密集,一般来说属于总线噪声;问题整改:有针对性的处理总线源。1、总线是否有作阻抗匹配 — 总线输出建议采用始端输出匹配电阻进行匹配,可以有效减小总线辐射,注意匹配电阻靠近驱动源放置;2、总线驱动和接收芯片的电源必须有滤波 — 总线驱动和接收芯
韬略科技EMC
2015-09-25
591浏览
【纯干货】独立窄带尖蜂噪声抑制方法(三)
问题描述:全频段内出现间隔均匀的窄带尖蜂群噪声(如下图)或单立尖蜂噪声。问题定位:如果是均匀的窄带尖蜂群噪声,计算其间隔频率差是多少,这个频率差可能就是其辐射源的基频;如果是单立的尖蜂噪声,则看看这个尖蜂噪声和单板上的时钟频率是否有倍频关系。问题整改:有针对性的处理确定的目标时钟源。方法如下:1、结构屏蔽设备的孔缝泄漏确定 — 对于结构屏蔽设备,孔缝处理不当会导致很大的辐射泄漏,严重的时候会彻
韬略科技EMC
2015-09-17
944浏览
【纯干货】独立窄带尖蜂噪声抑制方法(二)
问题描述:全频段内出现间隔均匀的窄带尖蜂群噪声(如下图)或单立尖蜂噪声。问题定位:如果是均匀的窄带尖蜂群噪声,计算其间隔频率差是多少,这个频率差可能就是其辐射源的基频;如果是单立的尖蜂噪声,则看看这个尖蜂噪声和单板上的时钟频率是否有倍频关系。问题整改:有针对性的处理确定的目标时钟源。方法如下:1、多层板上时钟线的处理在PCB板上:— 时钟线走内层;2、是否存在信号线跨其回流平面分割带 — 跨分
韬略科技EMC
2015-09-11
595浏览
【纯干货】独立窄带尖蜂噪声抑制方法(一)
问题描述:全频段内出现间隔均匀的窄带尖蜂群噪声(如下图)或单立尖蜂噪声。问题定位:如果是均匀的窄带尖蜂群噪声,计算其间隔频率差是多少,这个频率差可能就是其辐射源的基频;如果是单立的尖蜂噪声,则看看这个尖蜂噪声和单板上的时钟频率是否有倍频关系。问题整改:有针对性的处理确定的目标时钟源。方法如下:1、时钟源外壳是否接地l 在PCB板上:— 晶体外壳应该接地处理;— 晶振的接地脚应该接地2、时钟输出匹配
韬略科技EMC
2015-08-27
637浏览
【纯干货】宽带噪声抑制方法(二)
谱线问题描述:30~300MHz频段内出现宽带噪声超标,如下图:问题定位:一般由电源或地噪声辐射引起。问题整改:通过在电源线上增加去耦磁环(可开合)进行验证,如果有改善则说明和电源线有关系,采用以下整改方法: 1、单层板或双层板中电源走线的处理 — 增加电容为电源去耦;2、多层板中电源平面层的处理 — 要求电源平面和地平面紧邻;3、电源连接器插针定义是否符合要求 — 检查设备的板间电源
韬略科技EMC
2015-08-06
780浏览
宽带噪声抑制方法
谱线问题描述:30~300MHz频段内出现宽带噪声超标,如下图:问题定位:一般由电源或地噪声辐射引起。问题整改:通过在电源线上增加去耦磁环(可开合)进行验证,如果有改善则说明和电源线有关系,采用以下整改方法:1、滤波器是否良好接地;如果设备有一体化滤波器,检查滤波器的接地是否良好,接地线是否尽可能短;建议:金属外壳的滤波器的接地最好直接通过其外壳和地之间的大面积搭接。2、滤波器或滤波电路的输入输出
韬略科技EMC
2015-07-31
927浏览
正在努力加载更多...
广告
今日
新闻
1
笔记本高性能CPU来了:酷睿Ultra二代处理器产品线补全
2
升压转换器的输出范围该怎么增加?
3
英伟达50系列显卡发布,RTX 5090D近乎“零提升”?
4
哪吒汽车官网突发崩溃,正遭遇连环危机
5
ECIA:2025年1月电子元件销售热情有所提升
6
小米超级电机V8s项目组获“千万技术大奖”,背后有什么黑科技?
7
英飞凌:踏“绿”前行,引领能源变革新时代
8
Matter 1.4发布,智能家居能源自动化梦想成真
热门
文章排行
1
CES2025|1月7日上午10:30观看NVIDIACEO黄仁勋主题演讲
英伟达NVIDIA中国
4424
2
美国将长鑫、腾讯等134家中企列入黑名单(附中英文名单)
集成电路IC
2999
3
2024年12月及全年新能源汽车销量排名
一览众车
1985
4
2024年12月和全年,各大品牌汽车销量汇总!
汽车电子设计
1644
5
买了一年多的电车,续航从400掉到40公里!女车主崩溃:换电池都没货
快科技
1364
6
明天发布!NVIDIA新核弹RTX5090规格、售价抢先看
硬件世界
1329
7
骂华为的孙院士,上新闻联播了!说华为搞封闭垄断,是难以对抗西方的!
集成电路IC
1291
8
突发!禾赛科技被曝裁员:N+1,无年终奖
谈思汽车
1260
9
苹果2025年19款新品抢先看:最便宜和最轻薄iPhone都来了!
手机技术资讯
1121
10
阿里前董事长张勇履新职;字节TikTok算法负责人或离职;英特尔CEO突然宣布退休|2024年12月全球科技企业高管变动
全球TMT
1088
11
RTX50第一弹!RTX5080上市时间敲定
硬件世界
1088
12
王炸来了!特斯拉自动驾驶即将进入中国,只有华为能接招?
飙叔科技洞察
1013
13
苹果2025年19款新品抢先看:最便宜和最轻薄iPhone都来了!
快科技
981
14
【今日分享】2025新年贺词:梦虽遥,追则能圆,愿虽艰,持则可达
今日光电
943
15
上海2025年新能源牌照政策压哨更新!哪些细节值得关注?
汽车电子设计
817
16
本月,美国将发布AI芯片新禁令
谈思汽车
802
17
季华实验室、鹏城实验室、长春光机所等被美国“拉黑”,新型显示产业发展或“添堵”
JMInsights集摩咨询
794
18
突发!传激光雷达巨头大规模裁员,无年终奖!
EETOP
759
19
明日挂牌上市!功率模组核心部件散热基板国产龙头企业的成本与价值
碳化硅芯观察
732
20
2024中国大陆晶圆厂(Fab)汇总
芯极速
716
21
三星复制“梁孟松模式”落空
芯极速
715
22
消息称吉利、旷视展开智能驾驶合作,或成立一家新合资公司
52RD
711
23
扎克伯格高调庆祝40岁生日,花千万打造童年派对,比尔盖茨惊喜现身
美股研究社
662
24
特斯拉上海储能超级工厂竣工,产品将供应全球市场!同时,2025年将加速推进自动驾驶!
飙叔科技洞察
622
25
奥士康、世运、依顿…PCB企业2024年向泰国公司增资情况一览
PCBworld
600
26
iPhoneSE4更名为16E:2025年最便宜的苹果手机
手机技术资讯
587
27
兆易创新:高算力GD32G5系列MCU如何引领数字能源、电机控制与光通信的变革
皇华电子元器件IC供应商
579
28
曝极越汽车开始返聘员工夏一平称不会放弃
智能汽车电子与软件
574
29
2024信创:一文看懂国产芯片格局
智能计算芯世界
570
30
合计超61亿元!新增3起功率半导体收购/IPO案
行家说汽车半导体
551
广告
最新
评论
更多>>
一般喜欢标榜“打破垄断”“国x领先”的都死的比较快。嘴比手厉害
56089689_...
评论文章
2025-01-07
砺芯慧感:量产薄膜铂电阻传感器,打破国外30年垄断
我这,原先V10.5跑的好好的代码,更新V11后,单片机初始化时就不断重启
vaov_3734...
评论文章
2025-01-06
FreeRTOSV11.0升级了多项重要功能,兼容V10版本
资料
文库
帖子
博文
1
汽车动力与底盘MCU市场现状研究报告
2
20套大厂USP电路合集
3
《彩色电视机原理与维修》
4
《相对论》(美·爱因斯坦)
5
《时间的1000个瞬间》林为民
6
无线传能充电器设计与实现论文
7
《时间简史》(霍金 著)
8
ESP32TFT常用字体库.zip
9
基于单片机自动电阻测试仪设计论文
10
stm32OTG host文档说明
1
【工程师故事】+2024年:跟大家说说我从工程师到教师的跨界之旅
2
过流保护,大家都会采集电流后经过运放放大送单片机,单片机控制MOS,从而保护后级电路。那短路保护,大家都是怎么做的。现在遇到一个问题,...
3
C语言输出圣诞树
4
求助 请推荐一款8脚的DCDC , 12V 变5V的, 2A 就行,不虚标。
5
摩托车电子,ACC钥匙开关关了后,用示波器挂在ACC线上,还是能抓到一个漏电波形,设置的是5V的触发电平。这种概率性的漏电波形如何有什么办法吸...
6
超低频示波器的原理和应用
7
ESP32搭建TFT_LCD中文字库,附常用字库
8
5SMDJ58CA中功率TVS二极管参数及典型应用
1
硅电容系列二:硅电容主要厂家– 村田
2
NXP iMX8MP 处理器基于 Linux 关闭 Debug Console 输出
3
无人机锂电池行业发展现状及市场潜力分析报告
4
谈大模型的赋能
5
Matter 标准:破生态枷锁,启家居智能新时代
6
如何区分315MHz和433MHz遥控模块?
7
硅电容系列一:硅电容概述
8
德鲁克著作的解读:从“人”与“事”看管理的本质
1
电机加电阻有什么特殊用法吗?
2
NMOS管比PMOS管更受欢迎?是真的吗?
3
C语言函数的返回值的潜规则
4
详解linux系统组成结构
5
全面谈谈ESC系统
6
GPIO,I2C,SPI,UART,USART,USB的区别
7
防反接电路、防倒灌电路、过流保护和ESP保护
8
自激式开关电源电路设计
9
准谐振和同步整流在反激变换器中的应用
10
为什么建议你用表驱动法?嵌入式C语言代码开发技巧
在线研讨会
多路有光·精准不凡——KSW-SGM01模拟信号源发布会
重塑机器人未来:揭秘创新芯片解决方案的颠覆力量
迈来芯Triaxis® 3D磁传感器:汽车安全应用的优选方案
适用于安全连接的新一代PIC32CK SG/GC系列单片机
EE直播间
精密半导体参数测试解决方案
直播时间:01月08日 10:00
第三代功率半导体器件测试解决方案
直播时间:03月06日 10:00
E聘热招职位
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
笔记本高性能CPU来了:酷睿Ultra二代处理器产品线补全
升压转换器的输出范围该怎么增加?
英伟达50系列显卡发布,RTX 5090D近乎“零提升”?
哪吒汽车官网突发崩溃,正遭遇连环危机
ECIA:2025年1月电子元件销售热情有所提升