社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
2025 中国国际低空经济产业创新发展大会
2025 第六届国际 AIoT 生态发展大会
2025 全球 MCU 生态发展大会
2025 第六届中国国际汽车电子高峰论坛
IIC Shenzhen 2025
2025国际电子商情分销与供应链行业年会
IIC Shanghai 2025
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
登录|注册
芯语
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
首页
热门
专栏作家
电子产业热词
CEO专栏
技术文库
科技头条
专栏入驻
×
提示!
您尚未开通专栏,立即申请专栏入驻
芯语
帖子
博文
用户
芯语
登录
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
抑制方法
哈尔滨工业大学徐永向教授团队:永磁同步电机高频PWM噪声抑制方法综述
Wentao Zhang, Haiyang Gao, Yongxiang Xu, Jibin Zou. Review of High-frequency PWM Acoustic Noise Suppression Methods for PMSMs[J]. Chinese Journal of Electrical Engineering, 2024, 10(3): 94-109. DOI: 1
电动车千人会
2024-11-29
1649浏览
应用笔记|SiC模块并联驱动振荡的抑制方法
SiC MOSFET与传统Si器件相比,具有高电压、大电流、高速驱动、低损耗、高温稳定等诸多优点,是新一代器件。近年来,利用这些优异特性,作为向大功率发展的电动汽车 (EV) 的牵引逆变器电路,并联连接多个 SiC MOSFET元件的功率模块被使用的情况越来越多。另一方面,由于并联使用这样的高速元件,有时会发生元件间的并联驱动振荡 (以下简称振荡)。发生振荡的话元件有破坏的危险,因此抑制对策是市场
罗姆半导体集团
2024-11-27
569浏览
文章分享:BUCK开关节点震荡抑制方法(两篇)
一、分享内容简介 有人在问BUCK的开关震荡抑制问题,这里分享两篇芯龙半导体的文章,介绍了开关节点产生震荡的机理,另外还有输入C1电容的选择以及位置的放置,以及不同PCB布局的寄生电感大小,通过RC吸收抑制震荡的计算方法。二、内容截图 如下是理想的同步降压转换器拓扑与实际电路中的同步降压转换器的拓扑: 如下是开关管开关时的电流路径,包含了等效的电感与等效阻
硬件之路学习笔记
2024-07-05
509浏览
文章分享:BUCK开关节点震荡抑制方法(两篇)
一、分享内容简介 有人在问BUCK的开关震荡抑制问题,这里分享两篇芯龙半导体的文章,介绍了开关节点产生震荡的机理,另外还有输入C1电容的选择以及位置的放置,以及不同PCB布局的寄生电感大小,通过RC吸收抑制震荡的计算方法。二、内容截图 如下是理想的同步降压转换器拓扑与实际电路中的同步降压转换器的拓扑: 如下是开关管开关时的电流路径,包含了等效的电感与等效阻
硬件之路学习笔记
2024-05-22
907浏览
R课堂|SiCMOSFET:栅极-源极电压的浪涌抑制方法-总结
本文是“SiC MOSFET:栅极-源极电压的浪涌抑制方法”系列文章的总结篇。介绍SiC MOSFET的栅极-源极电压产生的浪涌、浪涌抑制电路、正电压浪涌对策、负电压浪涌对策和浪涌抑制电路的电路板布局注意事项。桥式结构SiC MOSFET的栅极信号,由于工作时MOSFET之间的动作相互关联,因此导致SiC MOSFET的栅-源电压中会产生意外的电压浪涌。这种浪涌的抑制方法除了增加抑制电路外,电路板
罗姆半导体集团
2023-04-13
957浏览
开关电源EMI产生原因有哪些,有哪些抑制方法
一、前言随着开关电源的体积越来越小、功率密度越来越大,EMI控制问题成为开关电源稳定性的一个关键因素。采用EMI滤波技术、屏蔽技术、密封技术及接地技术等,可以有效地抑制、消除干扰源及受扰设备之间的祸合和辐射,切断电磁干扰的传播途径,从而提高开关电源的电磁兼容性。开关电源是一种应用功率半导体器件并综合电力变换技术、电子电磁技术、自动控制技术等的电力电子产品。开关电源瞬态响应较差、易产生电磁干扰(EM
电子芯期天
2022-02-07
2590浏览
中电科58所解析封装设计中辐射EMI产生机理及其抑制方法
集成电路工艺进步和设计技术发展促使芯片功能日益复杂,集成度越来越高。在高速数字系统中,电磁干扰(EMI)和信号完整性及电源完整性密切相关,相互影响,例如:信号过孔穿过参考平面时不仅会引起高速信号边沿的畸变和退化,而且有可能由于阻抗突变和回路面积增大向电源/地平面注入足够能量从而产生谐振,引起较大的EMI。在芯片封装时减小EMI噪声,可以极大地减轻后续PCB级和整机的电磁兼容(EMC)设计压力,从而
MEMS
2021-12-03
2042浏览
开关电源纹波测量和抑制方法
开关稳压电源非常关键的一个指标就是纹波,它主要是由开关变换的方式导致的,也因纹波的存在会影响到后续电路的工作,尤其是在对纹波比较敏感的场合下。如何正确测量开关电源纹波?如何有效抑制开关电源的纹波以达到供电电路的要求?这些都是PCB设计工程师需要掌握的重要技能。开关电源纹波的测量要有效降低开关电源输出纹波我们首先得有个比较靠谱的测试方法,由于测试方法的问题而导致的假波形是整改不好的基本要求:使用示波
贸泽电子设计圈
2019-04-29
1824浏览
【纯干货】高密集型尖峰群噪声抑制方法
问题描述:在某些频段内出现无任何规律可寻的高密集型尖蜂群噪声(如下图)。问题定位:对于这些噪声,单板上没有任何时钟频率和其有关系,并且非常密集,一般来说属于总线噪声;问题整改:有针对性的处理总线源。1、总线是否有作阻抗匹配 — 总线输出建议采用始端输出匹配电阻进行匹配,可以有效减小总线辐射,注意匹配电阻靠近驱动源放置;2、总线驱动和接收芯片的电源必须有滤波 — 总线驱动和接收芯
韬略科技EMC
2015-09-25
654浏览
【纯干货】独立窄带尖蜂噪声抑制方法(三)
问题描述:全频段内出现间隔均匀的窄带尖蜂群噪声(如下图)或单立尖蜂噪声。问题定位:如果是均匀的窄带尖蜂群噪声,计算其间隔频率差是多少,这个频率差可能就是其辐射源的基频;如果是单立的尖蜂噪声,则看看这个尖蜂噪声和单板上的时钟频率是否有倍频关系。问题整改:有针对性的处理确定的目标时钟源。方法如下:1、结构屏蔽设备的孔缝泄漏确定 — 对于结构屏蔽设备,孔缝处理不当会导致很大的辐射泄漏,严重的时候会彻
韬略科技EMC
2015-09-17
1009浏览
【纯干货】独立窄带尖蜂噪声抑制方法(二)
问题描述:全频段内出现间隔均匀的窄带尖蜂群噪声(如下图)或单立尖蜂噪声。问题定位:如果是均匀的窄带尖蜂群噪声,计算其间隔频率差是多少,这个频率差可能就是其辐射源的基频;如果是单立的尖蜂噪声,则看看这个尖蜂噪声和单板上的时钟频率是否有倍频关系。问题整改:有针对性的处理确定的目标时钟源。方法如下:1、多层板上时钟线的处理在PCB板上:— 时钟线走内层;2、是否存在信号线跨其回流平面分割带 — 跨分
韬略科技EMC
2015-09-11
625浏览
【纯干货】独立窄带尖蜂噪声抑制方法(一)
问题描述:全频段内出现间隔均匀的窄带尖蜂群噪声(如下图)或单立尖蜂噪声。问题定位:如果是均匀的窄带尖蜂群噪声,计算其间隔频率差是多少,这个频率差可能就是其辐射源的基频;如果是单立的尖蜂噪声,则看看这个尖蜂噪声和单板上的时钟频率是否有倍频关系。问题整改:有针对性的处理确定的目标时钟源。方法如下:1、时钟源外壳是否接地l 在PCB板上:— 晶体外壳应该接地处理;— 晶振的接地脚应该接地2、时钟输出匹配
韬略科技EMC
2015-08-27
670浏览
【纯干货】宽带噪声抑制方法(二)
谱线问题描述:30~300MHz频段内出现宽带噪声超标,如下图:问题定位:一般由电源或地噪声辐射引起。问题整改:通过在电源线上增加去耦磁环(可开合)进行验证,如果有改善则说明和电源线有关系,采用以下整改方法: 1、单层板或双层板中电源走线的处理 — 增加电容为电源去耦;2、多层板中电源平面层的处理 — 要求电源平面和地平面紧邻;3、电源连接器插针定义是否符合要求 — 检查设备的板间电源
韬略科技EMC
2015-08-06
877浏览
宽带噪声抑制方法
谱线问题描述:30~300MHz频段内出现宽带噪声超标,如下图:问题定位:一般由电源或地噪声辐射引起。问题整改:通过在电源线上增加去耦磁环(可开合)进行验证,如果有改善则说明和电源线有关系,采用以下整改方法:1、滤波器是否良好接地;如果设备有一体化滤波器,检查滤波器的接地是否良好,接地线是否尽可能短;建议:金属外壳的滤波器的接地最好直接通过其外壳和地之间的大面积搭接。2、滤波器或滤波电路的输入输出
韬略科技EMC
2015-07-31
1072浏览
正在努力加载更多...
广告
今日
新闻
1
OPPO 发布 Find X8 Ultra 旗舰手机与 Watch X2 Mini 智能手表
2
深圳华强披露关税政策变化对公司运营的影响
3
测评EcoFlow的RIVER 2移动电源,最大的提升其实来自这里?
4
SiC MOSFET 如何提高 AI 数据中心的电源转换能效
5
辟谣!立讯精密不去美国建厂,优先考虑东南亚
6
谷歌重磅发布第七代TPU Ironwood,整体性能接近英伟达B200
7
特朗普强推iPhone回美制造,引发消费者抢购潮
8
欧盟发布“人工智能大陆行动计划”,简化AI法规、促进技术创新
热门
文章排行
1
芯片原产地解读,附18家美国芯片企业原产地详细分析
芯存社
14187
2
中美34%关税!对半导体产业影响几何?
芯极速
4807
3
中方重磅官宣:对美加征34%关税,对半导体行业有哪些影响
芯存社
3705
4
如何应对美国加征关税影响?多家厂商回应,美光决定加收产品附加费!
皇华电子元器件IC供应商
3623
5
美方威胁对华加征50%关税,中方回应!
皇华电子元器件IC供应商
3619
6
暴涨175%!这些化工原料逆势大涨!
PCB资讯
2340
7
小米SU7事故后雷军终于露面略显憔悴:网友喊话心疼一分钟
快科技
2265
8
不允许起火爆炸,GB38031《电动汽车用动力蓄电池安全要求》
锂电联盟会长
2080
9
中美互加关税,数字只是数字,对半导体影响几何
芯思想
1860
10
微软回应“退出中国”传闻
芯极速
1839
11
特朗普最后通牒:若中国不撤回报复关税,就再加征50%!中方严正回应
EETOP
1837
12
针对中国?特朗普将关税加至125%,其他国家暂缓征收90天并降至10%!
飙叔科技洞察
1676
13
公安厅调查“小米SU7事故”
电动知家
1666
14
出事故的小米SU7,到底是谁家的电池?
锂电联盟会长
1436
15
重磅!中方反制,对美加征34%关税!对半导体产业影响几何
DT半导体材料
1296
16
突发:125%关税,立即执行!美国再加码,贸易战“白热化”
硬件笔记本
1271
17
一文看懂OPPOFindX8系列暨移动智能生态旗舰新品发布会,售价3699元起
CINNOResearch
1192
18
【光电集成】华为科学家委员会主任何庭波:半导体正处于变革的十字路口
今日光电
1183
19
特朗普放弃打压英伟达H20芯片!
皇华电子元器件IC供应商
1131
20
国产视频接口标准正式发布!192GPS480W供电,完美取代HDMI和DisplayPort
EETOP
1118
21
重磅!中方反制,对美加征34%关税!对半导体产业影响几何
皇华电子元器件IC供应商
1071
22
史无前例!苹果iPhone恐怕要涨价了,价格翻近一倍
ittbank
1011
23
关税对芯片制造商影响有多大?这篇文章全部说透了!
美股研究社
969
24
突发!某国紧急叫停零跑C16车型认证
谈思汽车
962
25
2000人将失业!传美科技巨头退出中国?最新回应来了
芯通社
886
26
揭秘!2025慕尼黑上海电子展丨展位图及展商名单公布!
电力电子技术与新能源
801
27
史无前例!苹果iPhone恐怕要涨价了,价格翻近一倍
快科技
791
28
中国反制措施五连发!回应:美方危害全球经贸秩序稳定!
飙叔科技洞察
791
29
关税战令苹果手机价格或飙升!政策将重创苹果公司供应链
CINNOResearch
785
30
外媒:苹果iPhone将涨价至1.6万元
芯极速
773
广告
最新
评论
更多>>
可以在文章引用您的一张数据吗?
listen
评论文章
2025-04-09
221亿、13.9万台-2024年度中国移动机器人产业发展研究报告发布!
正好做这个热释电相关的课题,很有用
用户3871759
评论文章
2025-04-08
一文读懂热释电传感器的原理与应用
资料
文库
帖子
博文
1
IGBT并联使用要点(来源于onsemi)
2
传感器与信号处理-图书
3
电源工程师技术培训-初级
4
现代实用传感器电路-图书
5
BMS通讯协议
6
多传感器信息融合及应用
7
微弱直流电压信号采集
8
苏州永创智能科技详解“CMTI测试电源”共模瞬态抗扰度测试方案及标准
9
C#+WPF+Opencv模块化开发视觉对位运动控制系统
10
头文件类型定义
1
HMD3075国产首款量产型七位半万用表!青岛汉泰开启国产高...
2
宝砾微DCDC降压、DCDC升压、DCDC升降压、数模混合SOC 电源芯片
3
拆解西门子 PSU6200 10A电源,解读大厂与大厂之间的卷
4
cadence中如何测试鉴相器的输出电压和相差的关系
5
供电12V,灯珠2835的,规格书如附件,如果要做成5W的总功...
6
CV8788对比Lattice HDMI TX芯片!性能超过9022/9136,交期缩短
7
怎么判断MOS管是否处于开关饱和状态?有哪些简单的办法...
8
在咖啡馆做电力电子实验是种什么体验?
1
WT2003HX语音芯片:驱动电动自行车智能化升级的核心引擎
2
低速提示报警器-WT2003H语音芯片方案在AVAS领域的创新应用
3
协议标准第010篇 安全电压
4
卫星故障预警系统软件:卫星在轨安全的智能护盾
5
亥姆霍兹线圈的分类
6
卫星故障预警系统全面解析
7
亥姆霍兹线圈的主要用途有哪些
8
光颉(Viking)电阻授权代理:贞光科技提供全系列贴片电阻解决方案
1
PMSM无感FOC控制
2
MOS参数和LDO&电源台阶问题的思考
3
五分钟带你全面了解最全电气控制原理图
4
永磁同步电机反电势知识介绍
5
15个电路板维修秘籍,最后一招绝了!
6
压敏电阻VSTVS管
7
旁路,去耦,滤波,耦合电容大总结
8
开关电源的输入电容
9
双向OBC与无线充电(WPT)的深度集成技术
10
PCB为什么这样画?
在线研讨会
多物理场仿真在半导体制程中的应用
迈来芯新一代经济型热成像技术:赋能电力电子过热保护与智能应用温度监控
ADI 应用于电池管理系统 (BMS) 的电芯监测解决方案
利用氮化镓技术打造高效电机驱动——人形机器人、无人机与电动汽车应用
EE直播间
利用高性能源表和强大的软件, 实现半导体参数的测试和分析
直播时间:04月17日 10:00
E聘热招职位
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
OPPO 发布 Find X8 Ultra 旗舰手机与 Watch X2 Mini 智能手表
深圳华强披露关税政策变化对公司运营的影响
测评EcoFlow的RIVER 2移动电源,最大的提升其实来自这里?
SiC MOSFET 如何提高 AI 数据中心的电源转换能效
辟谣!立讯精密不去美国建厂,优先考虑东南亚