社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
2025 中国国际低空经济产业创新发展大会
2025 第六届国际 AIoT 生态发展大会
2025 全球 MCU 生态发展大会
2025 第六届中国国际汽车电子高峰论坛
IIC Shenzhen 2025
2025国际电子商情分销与供应链行业年会
IIC Shanghai 2025
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
登录|注册
芯语
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
首页
热门
专栏作家
电子产业热词
CEO专栏
技术文库
科技头条
专栏入驻
×
提示!
您尚未开通专栏,立即申请专栏入驻
芯语
帖子
博文
用户
芯语
登录
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
数字电路
数字电路中传输延时的影响—竞争冒险
门电路的两个或多个输入信号同时向相反的逻辑电平跳变的现象叫做竞争,这种竞争可能在电路的输出端产生尖峰脉冲,这种现象称为竞争冒险。竞争冒险产生的根本原因是不同的输入信号是通过不同的路径传输的,每条路径的传输延时不同,从而导致信号不能同时到达,输出信号就会出现不应出现的毛刺。接下来,我们通过一个简单的例子了解一下竞争冒险现象。这是一个组合逻辑电路,输入信号B取反后与输入信号A异或得到输出信号C。假设输
小小的电子之路
2024-02-21
1020浏览
数字电路中的亚稳态是什么?
亚稳态是指触发器的输入信号无法在规定时间内达到一个确定的状态,导致输出振荡,最终会在某个不确定的时间产生不确定的输出,可能是0,也可能是1,导致输出结果不可靠。1、亚稳态产生原因亚稳态的产生是输入信号违背了触发器的建立时间和保持时间导致的。建立时间是指在时钟边沿到来之前输入信号必须保持稳定的时间。保持时间是指在时钟边沿到来之后数据必须保持稳定的时间。输入信号如果在这两个时间段内没有保持稳定,就将产
小小的电子之路
2023-11-22
1353浏览
在PCB设计中,射频电路和数字电路如何和谐共处?
电子万花筒平台核心服务 中国最活跃的射频微波天线雷达微信技术群电子猎头:帮助电子工程师实现人生价值! 电子元器件:价格比您现有供应商最少降低5%单片射频器件大大方便了一定范围内无线通信领域的应用,采用合适的微控制器和天线并结合此收发器件即可构成完整的无线通信链路。它们可以集成在一块很小的电路板上,应用于无线数字音频、数字视频数据传输系统,无线遥控和遥测系统,无线数据采集系统,无线网络以及无线安全防
电子万花筒
2023-05-09
1146浏览
数字电路之MOS设计
点击👆一点电子👇关注我,右上角“...”设为 ★星标★,技术干货第一时间送达!1、MOS的基本性质 MOS,即场效应管,四端器件,S、D、G、B四个端口可以实现开和关的逻辑状态,进而实现基本的逻辑门。NMOS和PMOS具有明显的对偶特性:NMOS高电平打开(默认为增强型,使用的是硅栅自对准工艺,耗尽型器件这里不涉及),PMOS低电平打开。在忽略方向的情况下,采用共S极接法,有如下特性:第一张图是V
一点电子
2022-11-28
1733浏览
漫画描述数字电路之时序电路
1什么是时序电路?组合电路是根据当前输入信号的组合来决定输出电平的电路,换言之,就是现在的输出不会被过去的输入所左右,也可以说成是,过去的输入状态对现在的输出状态没有影响的电路。时序电路和组合电路不同,时序电路的输出不仅受现在输入状态的影响,还要受过去输入状态的影响。那么,如何才能将过去的输入状态反映到现在的输出上呢?时序电路到底需要些什么呢?人类总是根据过去的经验,决定现在的行动,这时我们需要的
路科验证
2022-06-15
800浏览
模拟电路与数字电路的区别
扫码免费观看课程全集长按识别
电子芯期天
2022-06-10
1159浏览
模拟电路与数字电路的区别
扫码免费观看课程全集长按识别
凡亿PCB
2022-06-09
918浏览
模拟电路和数字电路之间PCB设计的区别
来源 | 网络智库 | 云脑智库(CloudBrain-TT)云圈 | 进“云脑智库微信群”,请加微信:15881101905,备注您的研究方向声明 | 本号聚焦相关知识分享,内容观点不代表本号立场,可追溯内容均注明来源,若存在版权等问题,请联系(15881101905,微信同号)删除,谢谢本文就旁路电容、电源、地线设计、电压误差和由PCB布线引起的电磁干扰(EMI)等几个方面,讨论模拟和数字布线
云脑智库
2022-04-09
1422浏览
【知识分享】晶振决定数字电路的生与死
【干货免费领】福利|TI开关电源设计资料免费领取:点我PCB封装创建标准规范文档下载:点我福利|华为模拟电路资料免费领取!:点我晶振,在板子上看上去一个不起眼的小器件,但是在数字电路里,就像是整个电路的心脏。数字电路的所有工作都离不开时钟,晶振的好坏,晶振电路设计的好坏,会影响到整个系统的稳定性。所以更多的了解晶振,选择好系统使用的晶振,对数字电路来说是决定成败的第一步。我们目前常说的晶振都是石英
凡亿PCB
2022-01-09
1309浏览
晶振决定数字电路的生与死
晶振,在板子上看上去一个不起眼的小器件,但是在数字电路里,就像是整个电路的心脏。数字电路的所有工作都离不开时钟,晶振的好坏,晶振电路设计的好坏,会影响到整个系统的稳定性。所以更多的了解晶振,选择好系统使用的晶振,对数字电路来说是决定成败的第一步。我们目前常说的晶振都是石英晶体振荡器或者石英晶体谐振器的简称。他们都是利用石英晶体的压电效应制作而成。在石英晶体的两个电极上施加电场会使晶体产生机械变形,
可靠性杂坛
2021-10-26
1141浏览
浅谈“数字电路”的学习(8)- 编码器、译码器、多路复用器、解复用器的关系和应用
在数字电路教程的组合逻辑部分,最经典的示例除了加法器以外就是:Encoder - 编码器Decoder - 译码器Multiplexer - 简写Mux,多路复用器,也叫数据选择器Demultiplexer - 简写Demux,解复用器,也叫数据分配器其实是两对概念:Encoder/Decoder是跟code(码)相关的正反两个操作,Mux/Demux是跟数据流相关的正反两个操作。翻看各种教科书,
电子森林
2021-10-01
5741浏览
数字电路电平标准全解析
输入:VIH>3.5V,VIL<1.5V。可以看出TTL电平的噪声容限为0.4V,CMOS的噪声容限为1.5V。TTL和CMOS门电路结构:如图TTL门结构,输出级采用推挽式输出结构,T4为射极跟随的形式,输出电阻小,带负载能力强。如图CMOS门结构。3.3V LVCMOS:Vcc:3.3V;VOH>=3.2V;VOL<=0.1V;VIH>=2.0V;VIL<=
电源Fan
2021-09-27
1407浏览
浅谈“数字电路”的学习(6) - 看视频了解什么是FPGA?
展开 function _typeof(e){return e&&"undefined"!=typeof Symbol&&e.constructor===Symbol?"symbol":typeof e;}!function(e){if("object"===("undefined"==typeof module?"unde
电子森林
2021-09-25
1098浏览
数字电路电平标准全解析
输入:VIH>3.5V,VIL<1.5V。可以看出TTL电平的噪声容限为0.4V,CMOS的噪声容限为1.5V。TTL和CMOS门电路结构:如图TTL门结构,输出级采用推挽式输出结构,T4为射极跟随的形式,输出电阻小,带负载能力强。如图CMOS门结构。3.3V LVCMOS:Vcc:3.3V;VOH>=3.2V;VOL<=0.1V;VIH>=2.0V;VIL<=
嵌入式ARM
2021-09-18
2070浏览
浅谈“数字电路”的学习(5) - “组合逻辑”的学习逻辑。
过去一周多的时间,我认认真真翻阅了7、8本数电方面的书,这些教材的主线大同小异,一路读完组合逻辑,差不多已经遍历了整本书1/3左右的内容,但新的概念、要理解和记忆的东西实在太多,烧脑。除了这几本书,又补充了几本,包括康老的教材这些教材即便对我 - 一个有着十几年研发经验的老工程师来讲,最大的感觉是 - 看着晕、吃力,虽然每本书都试图讲清楚每一个知识点的作用和前、后文的关联,但作为一个被各种新概念和
电子森林
2021-09-16
1684浏览
浅谈"数字电路"的学习(4) - 学用FPGA从点灯开始
我们最常见到的电子元器件是什么,无疑是LED,在我们的生活中它无处不在,比如手机的背光、汽车的头灯、几乎所有的照明也都是LED的了。当然,对于我们做硬件的“板农”来讲, 哪个板子通上电以后没有俩LED在亮,你心里一定发毛 - 电源短路了?程序挂了?只要电源灯亮了,心理就踏实了.....3.3V在正常工作。状态指示灯只亮可能还不够,因为它的表情应该非常丰富,不同的节奏可能代表不同的状态,你
电子森林
2021-09-15
2466浏览
浅谈“数字电路”的学习(3)- 不需要安装软件、人人一学就会的FPGA学习板
使用FPGA学数电不再需要安装软件, 真的么?当然是真的,听我细细道来。。。。数字电路是一门非常基础的课程,核心是“数字”、“逻辑”、“电路”,充斥着各种烧脑的新概念和理论知识,但又是各种现代电子设备的基石,实用性非常强,因此与理论学习同步进行的动手实操体验,是学好数字电路的最佳方式。而最佳的体验工具自然是、也只能是FPGA - 现场可编程逻辑门阵列,它就像数字领域的万能积木,可以允许用户通过画图
电子森林
2021-09-14
1680浏览
浅谈“数字电路”的学习(2)- 在兴趣和体验中高效学习
“数电”如此基础的一门课程,但真正掌握却不那么容易,过去几年通过跟几百位来自不同学校、不同年级的硬禾实战营的学员们近距离接触,感觉到普遍存在着如下的问题:数电的学习实际上是脱离实践的,多数的学校是一个学期的理论课程之后再做EDA实验,上理论课的时候无法关联这些理论的应用场景,做实验的时候无法、也无暇有效地重温书本上的理论知识,而多数的学校教授理论课的老师和指导实验的老师是两拨人;没有有效的实验平台
电子森林
2021-09-10
1461浏览
浅谈“数字电路”的学习(1)- 我们身处的“数字逻辑”世界
也许你还没有意识到,我们人类其实一直生活在“数字”的世界里,老祖宗发明了“度、量、衡”(这本质上就是模数变换器 - ADC),就把世间能够感知到的一切“物”进行了量化,比如身高1米78的小张同学到超市买了3斤6两苹果、中午11点30分要赶去北京的高铁。。。虽然我们面对的自然界的对象是“模拟“(Analog)的,也就是说连续的量,但我们大脑里处理的信息,相互之间交流的信息,都已经转变成了量化的、不连
电子森林
2021-09-09
2608浏览
用漫画解释数字电路的时序电路!通俗易懂!
1、什么是时序电路?组合电路是根据当前输入信号的组合来决定输出电平的电路,换言之,就是现在的输出不会被过去的输入所左右,也可以说成是,过去的输入状态对现在的输出状态没有影响的电路。时序电路和组合电路不同,时序电路的输出不仅受现在输入状态的影响,还要受过去输入状态的影响。那么,如何才能将过去的输入状态反映到现在的输出上呢?时序电路到底需要些什么呢?人类总是根据过去的经验,决定现在的行动,这时我们需要
面包板社区
2021-08-03
1605浏览
干货|漫画描述数字电路之时序电路
▲ 更多精彩内容 请点击上方蓝字关注我们吧!1什么是时序电路?组合电路是根据当前输入信号的组合来决定输出电平的电路,换言之,就是现在的输出不会被过去的输入所左右,也可以说成是,过去的输入状态对现在的输出状态没有影响的电路。时序电路和组合电路不同,时序电路的输出不仅受现在输入状态的影响,还要受过去输入状态的影响。那么,如何才能将过去的输入状态反映到现在的输出上呢?时序电路到底需要
电子工程世界
2021-07-24
1260浏览
漫画描述数字电路之时序电路
来源 | 巧学模电数电单片机智库 | 云脑智库(CloudBrain-TT)云圈 | 进“云脑智库微信群”请加微信:15881101905,备注研究方向1什么是时序电路?组合电路是根据当前输入信号的组合来决定输出电平的电路,换言之,就是现在的输出不会被过去的输入所左右,也可以说成是,过去的输入状态对现在的输出状态没有影响的电路。时序电路和组合电路不同,时序电
云脑智库
2021-07-18
1389浏览
漫画描述数字电路之时序电路
1什么是时序电路?组合电路是根据当前输入信号的组合来决定输出电平的电路,换言之,就是现在的输出不会被过去的输入所左右,也可以说成是,过去的输入状态对现在的输出状态没有影响的电路。时序电路和组合电路不同,时序电路的输出不仅受现在输入状态的影响,还要受过去输入状态的影响。那么,如何才能将过去的输入状态反映到现在的输出上呢?时序电路到底需要些什么呢?人类总是根据过去的经验,决定现在的行动,这时我们需要的
ittbank
2021-07-09
2056浏览
晶振决定数字电路的生与死
晶振,在板子上看上去一个不起眼的小器件,但是在数字电路里,就像是整个电路的心脏。数字电路的所有工作都离不开时钟,晶振的好坏,晶振电路设计的好坏,会影响到整个系统的稳定性。所以更多的了解晶振,选择好系统使用的晶振,对数字电路来说是决定成败的第一步。我们目前常说的晶振都是石英晶体振荡器或者石英晶体谐振器的简称。他们都是利用石英晶体的压电效应制作而成。在石英晶体的两个电极上施加电场会使晶体产生机械变形,
云脑智库
2021-06-09
1051浏览
晶振决定数字电路的生与死
晶振,在板子上看上去一个不起眼的小器件,但是在数字电路里,就像是整个电路的心脏。数字电路的所有工作都离不开时钟,晶振的好坏,晶振电路设计的好坏,会影响到整个系统的稳定性。所以更多的了解晶振,选择好系统使用的晶振,对数字电路来说是决定成败的第一步。我们目前常说的晶振都是石英晶体振荡器或者石英晶体谐振器的简称。他们都是利用石英晶体的压电效应制作而成。在石英晶体的两个电极上施加电场会使晶体产生机械变形,
面包板社区
2021-06-01
1623浏览
正在努力加载更多...
广告
今日
新闻
1
美国“酝酿”半导体关税,严重冲击全球供应链
2
意法半导体披露全球计划细节,启动“自愿离职”
3
国际贸易争端加剧,芯片分销的出路在哪里?
4
DeepSeek的杰文斯悖论:AI芯片市场发展前瞻
5
“美对华加征245%关税”?多方回应
6
AI 驱动智能视觉,解码 AR 眼镜芯片创新之路
7
玄铁RISC-V:从开源到高性能,创新架构助推算力产业新篇章
8
智能手表与眼镜迈向 “无感智能”,端云协同破解 “不可能三角” 难题
热门
文章排行
1
Github屏蔽中国IP!!中美关税大战的战火还是烧到科技圈
硬件笔记本
16644
2
一文看懂OPPOFindX8系列暨移动智能生态旗舰新品发布会,售价3699元起
CINNOResearch
10550
3
突发!特朗普宣布豁免部分中国电子产品、电子元器件125%关税!附豁免产品清单
芯片之家
7064
4
什么是芯片的COO/CCO/COD/DIFF/COA/ACO?
射频美学
5029
5
美方豁免部分产品“对等关税”,中方最新回应
芯存社
4403
6
针对中国?特朗普将关税加至125%,其他国家暂缓征收90天并降至10%!
飙叔科技洞察
4107
7
美国宣布对笔记本电脑、智能手机、半导体等豁免征收“对等关税”
CINNOResearch
3716
8
反转!即将征收芯片关税,中美已通过中间人就关税问题初步接触,Q1中美双边贸易仍保持增长,鸿海解读美国关税豁免政策影响
芯存社
2733
9
微软突发“封杀令”!全面禁止Cursor使用C、C++、C#扩展,开发者被迫回退版本
C语言与CPP编程
2381
10
暂停接单、原产地判定...芯片人快被逼疯了!
芯世相
2309
11
重磅!美国宣布对集成电路、平板电脑、智能手机、显示模组等免征收“对等关税”
芯存社
1736
12
最新动力电池国标出台:不允许起火和爆炸
谈思汽车
1481
13
集成电路原产地认定新规详解——流片地即原产地的技术与合规分析
汽车电子与软件
1363
14
集成电路原产地新规,流片地成关键!
皇华电子元器件IC供应商
1310
15
瑞萨电子与您相约2025慕尼黑上海电子展共探“芯”力量
瑞萨MCU小百科
1256
16
电动汽车电池新国标公布:热扩散不起火、不爆炸
一览众车
1240
17
苹果Q1手机销量首次全球第一
WitDisplay
1219
18
特朗普,传出新消息
谈思汽车
1196
19
中国认定芯片流片地为原产地!对Intel、AMD、高通有什么影响?
文Q聊硬件
1126
20
中国紧急宣布!芯片流片地认定为原产地对Intel、AMD、高通有何影响
手机技术资讯
1109
21
AI含量拉满!TOP25+储能企业竞逐
行家说储能
956
22
美商务部长:面板必须在美国制造!
WitDisplay
936
23
美国宣布对显示模组/终端等豁免征收“对等关税”
WitDisplay
911
24
突发!特朗普“胁迫”台积电全产业链迁美,90%以上的5nm芯片断供?
飙叔科技洞察
875
25
不要震惊!国产超音速客机C949提上日程!
飙叔科技洞察
801
26
RTX5060Ti首发价格敲定!8GB不变、16GB便宜了
硬件世界
791
27
587Ah为最优解?TOP30+储能产品亮相北京
行家说储能
764
28
特朗普又变卦:关税没有例外!电子产品仍面临关税
CINNOResearch
745
29
千元天线数最多!余承东官宣华为新路由信号能穿三堵墙
文Q聊硬件
730
30
重大发明!!!中国科学家研发出"全天候"超级钠离子电池
锂电联盟会长
704
广告
最新
评论
更多>>
真的是,硬要逼我用ViewTurbo
用户17445...
评论文章
2025-04-13
Github屏蔽中国IP!!中美关税大战的战火还是烧到科技圈
A1,寓意,美国作为人造这一领域的第一人
自做自受
评论文章
2025-04-13
尴尬!美教育部长将AI读成Aone
资料
文库
帖子
博文
1
传感器与信号处理-图书
2
电源工程师技术培训-初级
3
微弱直流电压信号采集
4
多传感器信息融合及应用
5
苏州永创智能科技详解“CMTI测试电源”共模瞬态抗扰度测试方案及标准
6
硅微机械传感器
7
头文件类型定义
8
2025年感知技术十大趋势深度分析报告
9
C#+WPF+Opencv模块化开发视觉对位运动控制系统
10
[完结14章]Vue3.5+Electron+大模型 跨平台AI桌面聊天应用实战
1
HMD3075国产首款量产型七位半万用表!青岛汉泰开启国产高...
2
已知并联电阻总阻值,算出23456个......并联电阻的阻值,比...
3
拆解:DMA方式WM803开发板+ST7735驱动显示TTL例程解析
4
cadence中如何测试鉴相器的输出电压和相差的关系
5
【2025面包板社区内容狂欢节】发文、回帖赢25万E币!
6
在咖啡馆做电力电子实验是种什么体验?
7
EGBox Nano
8
MDD高效率整流管的工作原理:如何降低导通损耗?
1
AI帮你赢:人人都能用的AI方法论 读后感和书评,我会推荐给我的学生
2
水下装备体系论证系统软件全面解析
3
京东全球购十周年:宣布投入亿级资源,升级四大商家扶持举措
4
瑞芯微RK平台开发必备的20个常用命令,帮您效率翻倍
5
网络链路攻防战术对抗仿真系统软件全面解析
6
多极电磁铁有哪些应用
7
AI赋能,健康无界:WT2605C语音芯片智能血压计的个性化设计方案
8
语音芯片技术赋能:一体化方案重塑学爬玩具低成本开发新范式 ——以WT588F02B-C014为核心的超省BOM成本方案解析
1
电容的并联
2
PLC控制柜设计原理电装布局、接线图和原理图
3
傻傻分不清!MOS管和IGBT管有什么区别?
4
LDO稳压器电路分析、主要参数
5
十分钟了解新能源汽车整车电控系统
6
工程师一定要知道的电子元器件分类
7
什么是无功补偿的共补、分补、混补?
8
上下拉电阻与驱动力的关系
9
比亚迪纯电动汽车热泵空调技术详解
10
PLC选型,你真的选对了吗?
在线研讨会
迈来芯新一代经济型热成像技术:赋能电力电子过热保护与智能应用温度监控
ADI 应用于电池管理系统 (BMS) 的电芯监测解决方案
利用氮化镓技术打造高效电机驱动——人形机器人、无人机与电动汽车应用
ADMT4000重新定义多圈编码器设计
E聘热招职位
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
美国“酝酿”半导体关税,严重冲击全球供应链
意法半导体披露全球计划细节,启动“自愿离职”
国际贸易争端加剧,芯片分销的出路在哪里?
DeepSeek的杰文斯悖论:AI芯片市场发展前瞻
“美对华加征245%关税”?多方回应