社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
2025 中国国际低空经济产业创新发展大会
2025 第六届国际 AIoT 生态发展大会
2025 全球 MCU 生态发展大会
2025 第六届中国国际汽车电子高峰论坛
IIC Shenzhen 2025
2025国际电子商情分销与供应链行业年会
IIC Shanghai 2025
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
登录|注册
芯语
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
首页
热门
专栏作家
电子产业热词
CEO专栏
技术文库
科技头条
专栏入驻
×
提示!
您尚未开通专栏,立即申请专栏入驻
芯语
帖子
博文
用户
芯语
登录
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
输入阻抗
如何计算集成斩波放大器的ADC失调误差和输入阻抗?
典型DPD应用模数转换器(ADC)中集成的缓冲器和放大器通常是斩波型。有关这种斩波实现的例子,可参见AD7124-8 和AD7779数据手册。需要这种斩波技术来最大程度地降低放大器的失调和闪烁噪声(1/f ),因为与其他工艺(如双极性工艺)相比,CMOS晶体管噪声高,难以匹配。通过斩波,放大器的1/f和失调转换到较高频率,如图1所示。图1. 闪烁噪声(1/f )与斩波在斩波转换过程中,开关的电荷注
亚德诺半导体
2025-04-24
172浏览
计算集成斩波放大器的ADC失调误差和输入阻抗
典型DPD应用模数转换器(ADC)中集成的缓冲器和放大器通常是斩波型。有关这种斩波实现的例子,可参见AD7124-8 和AD7779数据手册。需要这种斩波技术来最大程度地降低放大器的失调和闪烁噪声(1/f ),因为与其他工艺(如双极性工艺)相比,CMOS晶体管噪声高,难以匹配。通过斩波,放大器的1/f和失调转换到较高频率,如图1所示。图1. 闪烁噪声(1/f )与斩波在斩波转换过程中,开关的电荷注
亚德诺半导体
2025-02-20
353浏览
运算放大器的输入阻抗那么大,为什么还需要输入偏置电流?1000字搞定运放电路设计之输入偏置电流
▼关注微信公众号:硬件那点事儿▼Part 01前言想必大家都知道我们在应用运放搭建电路时,使用的最基本的一条设计原则就是“虚断”,所谓虚断就是运放输入电阻比较大,输入电流就比较小,小到我们可以“忽略不计”,这个忽略不计是要打引号的,为什么呢?说白了就是我们说的大或是小都是相对而言的,举个例子,一分钱相对于100元可以相当于忽略不计,但是一分钱相对于1毛钱那就不能忽略不计了。输入偏置电流,输入失调电
硬件那点事儿
2024-09-27
2032浏览
跟随器和同相放大电路,谁的输入阻抗高?
最近被问了一个问题:反相放大电路、同相放大电路、跟随器,谁的输入阻抗高?正确答案应该是:跟随器输入阻抗最大,同相放大电路次之,反相放大电路输入阻抗最小。接下来就来简单分析一下原因。1、反相放大电路对于反相放大电路,其输入阻抗约为R1,一般来说,其取值要远小于运算放大器自身的输入阻抗。2、同相放大电路对于同相放大电路,其输入阻抗约为运算放大器自身输入阻抗的(1+A×F)倍,其中,反馈系数F恒小于1,
小小的电子之路
2024-08-14
576浏览
输入阻抗与输出阻抗的概念
图说硬件
2024-04-01
628浏览
APM32芯得EP.23|ADC输入阻抗&电压对采样精度的影响
《APM32芯得》系列内容为用户使用APM32系列产品的经验总结,均转载自21ic论坛极海半导体专区,全文未作任何修改,未经原文作者授权禁止转载。背景APM32F407的一个应用项目,发现ADC端口输入方波时,基准电压会随着输入方波信号跳变而上下跳变。如下图,黄色波形是监测到的基准电压Vref,绿色波形是ADC端口输入的方波信号,方波信号在0~4.5V跳变。2.5V的基准电压,会跳到2.75V。·
极海Geehy
2023-08-31
1044浏览
如何计算集成斩波放大器的ADC失调误差和输入阻抗?
典型DPD应用模数转换器(ADC)中集成的缓冲器和放大器通常是斩波型。有关这种斩波实现的例子,可参见AD7124-8 和AD7779数据手册。需要这种斩波技术来最大程度地降低放大器的失调和闪烁噪声(1/f ),因为与其他工艺(如双极性工艺)相比,CMOS晶体管噪声高,难以匹配。通过斩波,放大器的1/f和失调转换到较高频率,如图1所示。图1. 闪烁噪声(1/f )与斩波在斩波转换过程中,开关的电荷注
亚德诺半导体
2023-04-11
1075浏览
干货|输入阻抗和输出阻抗的区别,看完这篇就懂了!
▲ 更多精彩内容 请点击上方蓝字关注我们吧!输入阻抗输入阻抗(input impedance)是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。在同样的输入电压的情况下,如果输入阻抗很低,就需要流过较大电流,这就要考验前级的电流输出能力了;而如果输入阻抗很高,那么只需要很小的电
电子工程世界
2022-12-29
2504浏览
输入阻抗和输出阻抗的区别,看完这篇就懂了!
点击👆一点电子👇关注我,右上角“...”设为 ★星标★,技术干货第一时间送达!输入阻抗输入阻抗(input impedance)是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。在同样的输入电压的情况下,如果输入阻抗很低,就需要流过较大电流,这就要考验前级的电流输出能力了;而如
一点电子
2022-12-28
2469浏览
输入阻抗和输出阻抗的区别,看完这篇就懂了!
输入阻抗输入阻抗(input impedance)是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。在同样的输入电压的情况下,如果输入阻抗很低,就需要流过较大电流,这就要考验前级的电流输出能力了;而如果输入阻抗很高,那么只需要很小的电流,这就为前级的电流输出能力减少了很大负担。
电源研发精英圈
2022-12-26
1192浏览
什么是输入阻抗、输出阻抗和阻抗匹配
先了解一下阻抗的概念。我们都知道电阻是有阻碍电流作用的,那电容电感有吗?答案是肯定的。在百度词条中,给阻抗的定义是:在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗一般用Z表示,是一个复数,实部称为电阻,虚部称为电抗,电抗由容抗和感抗组成。所以在R、C、L的电路中,很容易得到阻抗Z为:其中,是电阻,是虚数单位,是感抗,是容抗。之前写过一篇文章,关于阻容感的等效模型,可以看
面包板社区
2022-10-03
3936浏览
聊一聊输入阻抗、输出阻抗和阻抗匹配
▼关注公众号:工程师看海▼朋友问了一个问题:“集总参数电路中,阻抗匹配(内阻=外阻)可以使负载得到最大的功率输出”这句话怎么理解?这里涉及到几个概念:输入阻抗、输出阻抗、阻抗匹配,今天简单的聊一聊。先了解一下阻抗的概念。我们都知道电阻是有阻碍电流作用的,那电容电感有吗?答案是肯定的。在百度词条中,给阻抗的定义是:在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗一般用Z表示
工程师看海
2022-04-09
1645浏览
自举电路可以增加输入阻抗,你知道吗?
来源 | 工程师看海智库 | 云脑智库(CloudBrain-TT)云圈 | 进“云脑智库微信群”,请加微信:15881101905,备注您的研究方向声明 | 本号聚焦相关知识分享,内容观点不代表本号立场,可追溯内容均注明来源,若存在版权等问题,请联系(15881101905,微信同号)删除,谢谢。今天再来介绍下自举电路增加输入阻抗的原理!1 输入阻抗的计算方法我们从最简单的电路开始一点一点分析,
云脑智库
2022-03-27
1006浏览
输入阻抗、输出阻抗和阻抗匹配
网友问了一个问题:“集总参数电路中,阻抗匹配(内阻=外阻)可以使负载得到最大的功率输出”这句话怎么理解?这里涉及到几个概念:输入阻抗、输出阻抗、阻抗匹配,今天简单的聊一聊。先了解一下阻抗的概念。我们都知道电阻是有阻碍电流作用的,那电容电感有吗?答案是肯定的。在百度词条中,给阻抗的定义是:在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗一般用Z表示,是一个复数,实部称为电阻
面包板社区
2022-03-21
1511浏览
聊一聊输入阻抗、输出阻抗和阻抗匹配
来源:记得诚有朋友问了一个问题:“集总参数电路中,阻抗匹配(内阻=外阻)可以使负载得到最大的功率输出”这句话怎么理解?这里涉及到几个概念:输入阻抗、输出阻抗、阻抗匹配,今天简单的聊一聊。先了解一下阻抗的概念。我们都知道电阻是有阻碍电流作用的,那电容电感有吗?答案是肯定的。在百度词条中,给阻抗的定义是:在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗一般用Z表示,是一个复数
EETOP
2022-03-20
1466浏览
自举电路可以增加输入阻抗,你知道吗?
▼关注公众号:工程师看海▼ 大家好,我是工程师看海。以前写过一篇文章,介绍自举电路在BUCK电源的应用,驱动高边MOShttps://www.dianyuan.com/eestar/article-2127.html反馈不错,今天再来介绍下自举电路增加输入阻抗的原理,喜欢的同学记得点赞、转发,多多支持!加微信:chunhou0820获取自举电路仿真文件1 输入阻抗的计算方法我们从最简单的电路开始
工程师看海
2022-03-10
1290浏览
如何选择示波器耦合输入阻抗(50Ω-1M?)
熟悉示波器的朋友可能都会有过这样的困惑:输入阻抗有1MΩ和50Ω两种,我们到底该如何选择呢?示波器测量与50Ω相关的注意事项示波器接入后等效电路 1MΩ阻抗和50Ω阻抗档位的设计出发点是不同的,1MΩ档位的出发点是为了让示波器拥有较小的负载效应,可以“安安静静的”做个旁观者。而50Ω档位则是为了消除传输线上的信号反射,将传输线影响降到最低。选择何种阻抗档位,需要根据实际测量情况而定
射频百花潭
2022-01-05
8997浏览
自举电路可以增加输入阻抗,你知道吗?
▼关注公众号:工程师看海▼以前写过一篇文章,介绍自举电路在BUCK电源的应用,驱动高边MOShttps://www.dianyuan.com/eestar/article-2127.html反馈不错,今天再来介绍下自举电路增加输入阻抗的原理,喜欢的同学记得点赞、转发,多多支持!加微信:chunhou0820获取自举电路仿真文件1 输入阻抗的计算方法我们从最简单的电路开始一点一点分析,先定义一下输入
工程师看海
2021-09-26
1561浏览
对比理解输入阻抗、输出阻抗和阻抗匹配,更好理解
本文来源面包板社区一、关于阻抗的基本概念首先说说电阻(Resistance),在电路中对电流通过具有阻碍作用,并且造成能量消耗的部分,称为电阻。电阻常用R表示,单位欧姆(Ω),导体电阻值由导体的材料、横截面积和长度决定,具体计算不在此赘述。接下来引出阻抗(Impedance)的概念。在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实际称为电阻,虚称
可靠性杂坛
2021-09-10
2030浏览
详解输出阻抗与输入阻抗
一般讲:<a>采集信号 1.信号源为电压源,输入阻抗越大越好; 2.信号源为电流源,输入阻抗越小越好;<b>采集功率
电源Fan
2021-09-07
2976浏览
对比理解输入阻抗、输出阻抗和阻抗匹配,更好理解
一、关于阻抗的基本概念首先说说电阻(Resistance),在电路中对电流通过具有阻碍作用,并且造成能量消耗的部分,称为电阻。电阻常用R表示,单位欧姆(Ω),导体电阻值由导体的材料、横截面积和长度决定,具体计算不在此赘述。接下来引出阻抗(Impedance)的概念。在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实际称为电阻,虚称为电抗。其中,电容
ittbank
2021-07-30
7522浏览
对比理解输入阻抗、输出阻抗和阻抗匹配,更好理解
一、关于阻抗的基本概念首先说说电阻(Resistance),在电路中对电流通过具有阻碍作用,并且造成能量消耗的部分,称为电阻。电阻常用R表示,单位欧姆(Ω),导体电阻值由导体的材料、横截面积和长度决定,具体计算不在此赘述。接下来引出阻抗(Impedance)的概念。在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实际称为电阻,虚称为电抗。其中,电容
面包板社区
2021-07-27
1678浏览
详解输出阻抗与输入阻抗
一般讲: <a>采集信号 1.信号源为电压源,输入阻抗越大越好; 2.信号源为电流源,输入阻抗越小越好; <b>采集功率 &
可靠性杂坛
2021-07-21
2136浏览
详解输出阻抗与输入阻抗
一般讲: <a>采集信号 1.信号源为电压源,输入阻抗越大越好; 2.信号源为电流源,输入阻抗越小越好; <b>采集功率 &
面包板社区
2021-07-21
3081浏览
【世说设计】如何计算集成斩波放大器的ADC失调误差和输入阻抗?
典型DPD应用典型DPD应用模数转换器(ADC)中集成的缓冲器和放大器通常是斩波型。有关这种斩波实现的例子,可参见AD7124-8 和AD7779数据手册。需要这种斩波技术来最大程度地降低放大器的失调和闪烁噪声(1/f ),因为与其他工艺(如双极性工艺)相比,CMOS晶体管噪声高,难以匹配。通过斩波,放大器的1/f和失调转换到较高频率,如图1所示。图1. 闪烁噪声(1/f )与斩波在斩波转换过程中
Excelpoint世健
2021-05-10
834浏览
正在努力加载更多...
广告
今日
新闻
1
支持松耦合电源充电的线性充电解决方案
2
革命性的电池架构:固态电池的崛起
3
智能电网:引领能源行业革命的关键
4
寻找锂离子替代品的竞赛愈演愈烈
5
物理智能:打破数字壁垒,让AI触摸真实世界
6
索尼或拆分低利润率的半导体子公司
7
北京新政支持民营企业采购自主可控 GPU,买谁家的好?
8
用PWM编程LM317恒流源:多方案汇总
热门
文章排行
1
闭环!DeepSeek-R2与华为深度合体,昇腾芯片利用率达82%;推理成本较GPT-4下降了97.4%!
飙叔科技洞察
2440
2
美国要破防了!DeepSeekR2将彻底摆脱英伟达,全部基于华为芯片
快科技
1973
3
DeepSeekR2要来了!看点大爆料
ittbank
1734
4
告别Windows!华为鸿蒙PC版即将发布:自主可控、统一生态!
飙叔科技洞察
1569
5
iQOOZ10TurboPro发布:特爆越级,样样超Pro
Qualcomm中国
1383
6
彻底告别Windows!华为鸿蒙PC版本月发布:自主可控、统一生态
快科技
1377
7
2025上海车展智驾域控制器方案大盘点(共28家)
汽车电子与软件
1339
8
传华为接洽多家企业,测试昇腾910D
芯极速
1016
9
小米推出首个大模型MiMo,赶超OpenAI阿里
WitDisplay
1013
10
中国台湾将实施“N-1”限制,禁止台积电出口最先进制程技术!
飙叔科技洞察
967
11
华为最强大AI芯片910D曝光!首批样本5月到货对标NVIDIAH100
文Q聊硬件
901
12
394号文重磅发布,储能有何影响?
行家说储能
756
13
努比亚Z70SUltra摄影师版手机发布:第七代真全面无孔屏,4099元起
CINNOResearch
647
14
【行业资料】2024-2025年度人形机器人产业发展研报
移动机器人产业联盟
607
15
一加Ace5系列新机5月见!首发天玑9400E超骁龙8Gen3
快科技
594
16
“芜限新能,瑞见未来”——走进iCAR奇瑞新能源活动在芜湖高新区圆满落幕
CINNOResearch
591
17
合力泰“摘帽”冲刺,申请撤销退市风险警示及其他风险警示!
PCBworld
587
18
半导体4月报:半导体原产地认定细则落地,机构预估25Q2存储器合约价涨幅将扩大
华强电子产业研究所
571
19
台积电公布2nm工艺良率!
半导体前沿
553
20
专利战或迎和解,京东方将访问三星LG
SemiDisplayView
512
21
小米发布开源AI大模型MiMo,加入中国AI竞赛!
飙叔科技洞察
510
22
车展总结丨2025上海车展展后深度洞察报告
智能汽车设计
504
23
车展总结丨2025年上海车展展后趋势报告
智能汽车设计
484
24
小米SU7Ultra突发!
电动知家
470
25
消费电子4月报:国补驱动Q1市场回暖,警惕关税不确定性
华强电子产业研究所
460
26
储能新变量?江苏工商业分时电价新政来了!
行家说储能
432
27
胜宏科技厂房四封顶仪式隆重举行
PCB资讯
421
28
“USB接口PCB设计全攻略|从Type-C到高速布线,一文掌握核心要点!”
凡亿PCB
420
29
AMD中国特供新卡RX9070GRE突袭上架!4199元起
硬件世界
415
30
现代汽车25年一季度财报:稳中有进,中国市场大幅下滑
汽车电子设计
409
广告
最新
评论
更多>>
学习了
青青水草
评论文章
2025-04-22
湿度正在偷偷毁掉你的基准源精度!
good,.
mhlyjay
评论文章
2025-04-22
MOS管损耗理论计算公式推导及LTspice仿真验证
资料
文库
帖子
博文
1
IGBT图解
2
2025年感知技术十大趋势深度分析报告
3
WeActStudio的STM32G431CoreBoard开发资料
4
STM32G431移植FreeModbus
5
[16章]AI Agent从0到1定制开发 全栈/全流程/企业级落地实战
6
[完结14章]Vue3.5+Electron+大模型 跨平台AI桌面聊天应用实战
7
[鸟哥的Linux私房菜:服务器架设篇(第二版)].鸟哥.扫描版
8
【Winform+WPF】喷涂工艺SCADA采集监控上位机
9
纳祥科技8位移位寄存器74HC164D中文规格书,替代SN74HC164DR
10
[17章]计算机视觉—YOLO+Transfomer多场景目标检测实战
1
电解电容寿命能不能满足5年?固态电容的寿命是不是要更...
2
【敏矽微ME32G030系列】+初识及测试开发板(外接继电器)
3
MacBook扩展坞怎么选?
4
【拆解】某斑学习思维机
5
【敏矽微ME32G030系列】+初识篇
6
音频线那么多种,你还分不清接哪根线?一文搞懂常见音...
7
AVM合成数据仿真验证实操项目分享
8
被动元器件正品代理商,有代理证,欢迎来咨询
1
浪潮之上:智能时代的觉醒
2
资安及护眼 –防窥片的常见问题及测试要点
3
连续流型液氮恒温器核心特点解析
4
营收净利双暴跌,股价腰斩,老板电器任富佳当不好老板
5
芯知识|小体积语音芯片方案WTV/WT2003H声音播放ic应用解析
6
T3出行的破局之路在何方?
7
贴片电感和贴片电容的区分方法
8
宁德时代,无孔不入
1
MOSFET选型规范
2
理解功率MOSFET的RDS(ON)温度系数特性
3
CAN总线显隐性电平解析
4
DC-DC电路设计中加的“自举电容”到底有何讲究?
5
收藏|原理图设计规范133条检查清单
6
线弧异常分析
7
电流检测,采样电阻Rshunt切换电路设计
8
MLCC噪声啸叫及对策
9
TL494反相降压-升压转换器电路工作原理、电路设计、计算、测试
10
一篇文章告别锂离子电池知识盲区
在线研讨会
利用氮化镓技术打造高效电机驱动——人形机器人、无人机与电动汽车应用
ADMT4000重新定义多圈编码器设计
NSSine™系列实时控制MCU在数字电源和电机控制领域的应用
ST 在大功率热管理系统中的电机控制系统方案(AI 数据中心/暖通空调/电池储能系统/变频制冷)
EE直播间
中小数字IC云仿真加速方案:弹性资源与验证效率提升
直播时间:05月22日 10:00
E聘热招职位
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
支持松耦合电源充电的线性充电解决方案
革命性的电池架构:固态电池的崛起
智能电网:引领能源行业革命的关键
寻找锂离子替代品的竞赛愈演愈烈
物理智能:打破数字壁垒,让AI触摸真实世界