社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
2025 中国国际低空经济产业创新发展大会
2025 第六届国际 AIoT 生态发展大会
2025 全球 MCU 生态发展大会
2025 第六届中国国际汽车电子高峰论坛
IIC Shenzhen 2025
2025国际电子商情分销与供应链行业年会
IIC Shanghai 2025
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
登录|注册
芯语
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
首页
热门
专栏作家
电子产业热词
CEO专栏
技术文库
科技头条
专栏入驻
×
提示!
您尚未开通专栏,立即申请专栏入驻
芯语
帖子
博文
用户
芯语
登录
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
失效模式
解析LLC谐振半桥变换器的失效模式
欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 905749978高可靠新能源行业顶尖自媒体在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不
电力电子技术与新能源
2025-04-11
87浏览
关于线束扎带加工失效模式与防呆分析
摘 要:文章针对汽车线束加工过程中扎带漏扎和错扎问题,从人、机、料、法等方面进行失效分析,并结合实际加工情况采取标准化作业和相似件管理等防呆措施提高线束加工准确率,进而达到减少加工成本的目的。 01前 言线束作为汽车的“神经系统”,负责汽车各部分之间电压和信号等数据的传递。同时线束也如“神经系统”般复杂和脆弱,加工过程易出现问题,导致车辆无法正常运行,因此保证线束可靠性和加工准确性至关重要。据
线束中国
2025-01-17
248浏览
【技研】汽车螺柱焊介绍-工作原理,工艺介绍,失效模式
原文下载,见文末 Documents Download【声明】内容来源网络,仅供参考学习。如需删除,联系小编:QCJYLBQuestions常见问题Q如何经常看到我们的公众号?第一步:打开公众首页,点击“...”设置图标第二步:点击“设为星标”第三步:完成星标,后面就会经常推送公众号内容Q如何检索到自己想要的内容?第一步:打开公众首页,点击🔍检索图标第二步:在检索框输入需要检索的关键词,如“智能驾
汽车技研
2024-12-18
127浏览
解析LLC谐振半桥变换器的失效模式
欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 905749978高可靠新能源行业顶尖自媒体在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不
电力电子技术与新能源
2024-03-11
594浏览
解析LLC谐振半桥变换器的失效模式
点击蓝字 关注我们在功率转换市场中,尤其对于通信/服务器电源应用,不断提高功率密度和追求更高效率已经成为最具挑战性的议题。对于功率密度的提高,最普遍方法就是提高开关频率,以便降低无源器件的尺寸。零电压开关(ZVS)拓扑因具有极低的开关损耗、较低的器件应力而允许采用高开关频率以及较小的外形,能够以正弦方式对能量进行处理,开关器件可实现软开闭,因此可以大大地降低开关损耗和噪声。在这些拓扑中,移相ZVS
安森美
2024-03-05
838浏览
PPT丨水分、杂质对锂电池性能影响及主要失效模式分析
点击左上角“锂电联盟会长”,即可关注!来源:锂电派相关阅读:锂离子电池制备材料/压力测试!锂电池自放电测量方法:静态与动态测量法!软包电池关键工艺问题!一文搞懂锂离子电池K值!工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!揭秘宁德时代CATL超级工厂!搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!锂离子电池生产中各种问题汇编!锂电池循环寿命研究汇总(附60份精品资料免费下载)
锂电联盟会长
2024-01-22
616浏览
详解车规MCU之设计失效模式和影响分析(DFMEA)
内容提要引言1. 什么是设计失效模式和影响分析(DFMEA)? 1.1 系统化和结构化方法 1.2 关注产品设计 1.3 风险评估 1.4 评估潜在故障 1.5 对功能和安全的影响 1.6 持续改进 2. 为什么设计失效模式和影响分析(DFMEA)很重要? 2.1 风险缓解 2.2 成本效益 2.3 质量改进 2.4 合规性 3. 何时使用设计失效模式和影响分析(DFMEA) 3.1 在新产品的初
汽车电子与软件
2023-12-15
2825浏览
关于线束扎带加工失效模式与防呆分析
摘 要:文章针对汽车线束加工过程中扎带漏扎和错扎问题,从人、机、料、法等方面进行失效分析,并结合实际加工情况采取标准化作业和相似件管理等防呆措施提高线束加工准确率,进而达到减少加工成本的目的。 01前 言线束作为汽车的“神经系统”,负责汽车各部分之间电压和信号等数据的传递。同时线束也如“神经系统”般复杂和脆弱,加工过程易出现问题,导致车辆无法正常运行,因此保证线束可靠性和加工准确性至关重要。据
线束中国
2023-11-08
1483浏览
PPT丨水分、杂质对锂电池性能影响及主要失效模式分析
点击左上角“锂电联盟会长”,即可关注!来源:锂电派相关阅读:锂离子电池制备材料/压力测试!锂电池自放电测量方法:静态与动态测量法!软包电池关键工艺问题!一文搞懂锂离子电池K值!工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!揭秘宁德时代CATL超级工厂!搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!锂离子电池生产中各种问题汇编!锂电池循环寿命研究汇总(附60份精品资料免费下载)
锂电联盟会长
2023-10-18
1022浏览
如何避免MOSFET常见问题和失效模式
点击👆一点电子👇关注我,右上角“...”设为 ★星标★,技术干货第一时间送达!1、功率 MOSFET简介功率 MOSFET 于 20 世纪 70 年代首次推出,并成为世界上应用最广泛的功率晶体管。与双极功率晶体管等老技术相比,它们在线性和开关应用中具有许多优势。这些优势包括极大改进的开关特性、易于并联、没有二次击穿效应以及更宽的安全工作区 (SOA)。MOSFET 属于电压驱动型跨导器件。构成 M
一点电子
2023-09-22
2277浏览
LLC谐振变换器中常见MOSFET失效模式的分析与解决方法
点击👆一点电子👇关注我,右上角“...”设为 ★星标★,技术干货第一时间送达!提高功率密度已经成为电源变换器的发展趋势。对于当今的开关电源(SMPS)而言,具有高可靠性也是非常重要的。LLC 谐振半桥变换器因其自身具有的多种优势逐渐成为一种主流拓扑。这种拓扑得到了广泛的应用,包括高端服务器、平板显示器电源的应用。但是,包含有LLC谐振半桥的ZVS桥式拓扑,需要一个带有反向快速恢复体二极管的MOSF
一点电子
2023-07-26
1653浏览
如何避免MOSFET常见问题和失效模式
点击👆一点电子👇关注我,右上角“...”设为 ★星标★,技术干货第一时间送达!免费领取 |《电子元器件知识大全》电子书(点击上面蓝色字体,获取学习资料!)1、功率 MOSFET简介功率 MOSFET 于 20 世纪 70 年代首次推出,并成为世界上应用最广泛的功率晶体管。与双极功率晶体管等老技术相比,它们在线性和开关应用中具有许多优势。这些优势包括极大改进的开关特性、易于并联、没有二次击穿效应以
一点电子
2023-06-03
3129浏览
如何避免MOSFET常见问题和失效模式
1、功率 MOSFET简介功率 MOSFET 于 20 世纪 70 年代首次推出,并成为世界上应用最广泛的功率晶体管。与双极功率晶体管等老技术相比,它们在线性和开关应用中具有许多优势。这些优势包括极大改进的开关特性、易于并联、没有二次击穿效应以及更宽的安全工作区 (SOA)。MOSFET 属于电压驱动型跨导器件。构成 MOSFET 管芯的硅的不同掺杂方式将 MOSFET 分成两个技术大类,,即平面
电源研发精英圈
2023-05-30
1112浏览
如何避免MOSFET常见问题和失效模式
前些时分享了东芝的《MOSFET栅极驱动电路应用说明》的文档,今天再给兄弟们分享一个infineon的文档《使用功率MOSFET进行设计,如何避免常见问题和故障模式》,依然是我觉得比较好的。 原文档的链接如下:https://www.infineon.com/dgdl/Infineon-Designing_with_Power_MOSFETs-ApplicationNotes-v01_00-CN.
硬件工程师炼成之路
2023-03-20
2020浏览
线束失效模式之“端子退针”不良的有效预防措施
一、引 言汽车线束由端子、护套、导线、连接器、胶带、波纹管、PVC 管、热缩管、熔断器、保险盒等附件组成,起整车神经网络功能,传递信号及执行电能作用。由于线束在整车中功能不同,分为发动机线束、前部线束、仪表线束、底盘线束、门线束、顶部线束等(图1)。图1 汽车线束分布图二、关于端子退针线束是汽车的神经网络系统,在整车运行中负责传递电压、信号及大量的数据。特别是在互联网和大数据的背景下,不仅要求
线束中国
2022-10-17
808浏览
锂电池失效模式与关键控制参数!
点击左上角“锂电联盟会长”,即可关注!相关阅读:锂电池自放电测量方法:动态测量法!锂电池自放电测量方法:静置测量法!动力电池HPPC的测试原理和方法太全面了!电池材料解决方案!锂离子电池制备材料/压力测试一文搞懂锂离子电池K值!工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!揭秘宁德时代CATL超级工厂!搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!锂离子电池生产中各种问题汇编!锂电池
锂电联盟会长
2022-08-30
910浏览
干货|寻根究底:PFC电路旁路二极管作用及MOSFET常见失效模式
中大功率的ACDC电源都会采用有源功率因数校正PFC电路来提高其功率因数,减少对电网的干扰。在PFC电路中,常用的结构是BOOST电路,在实际的使用中,通常会加一个旁路二级管D2,如图1所示。旁路二级管D2的作用,不同的资料,不同的工程师,都有不同的解释,下面逐一分析说明。图1:PFC电路 1、减少PFC的二极管D1的浪涌电流,因为D1是快速恢复二极管,抗浪涌电流的能力比较差。这种解释似乎有一点道
电子工程世界
2022-08-16
1650浏览
干货|寻根究底:PFC电路旁路二极管作用及MOSFET常见失效模式
中大功率的ACDC电源都会采用有源功率因数校正PFC电路来提高其功率因数,减少对电网的干扰。在PFC电路中,常用的结构是BOOST电路,在实际的使用中,通常会加一个旁路二级管D2,如图1所示。旁路二级管D2的作用,不同的资料,不同的工程师,都有不同的解释,下面逐一分析说明。图1:PFC电路 1、减少PFC的二极管D1的浪涌电流,因为D1是快速恢复二极管,抗浪涌电流的能力比较差。这种解释似乎有一点道
电子工程世界
2022-07-26
2094浏览
「芯报告」功率模块:典型失效模式及解决方法
来源 | 芯tip智库 | 云脑智库(CloudBrain-TT)云圈 | 进“云脑智库微信群”,请加微信:15881101905,备注您的研究方向声明 | 本号聚焦相关知识分享,内容观点不代表本号立场,可追溯内容均注明来源,若存在版权等问题,请联系(15881101905,微信同号)删除,谢谢报告主题:功率模块:典型失效模式及解决方法报告作者:Alex VoronelBusiness Devel
云脑智库
2022-05-10
1713浏览
锂电池失效模式与影响分析FMEA
点击上面↑“电动知家”可以订阅哦!近日精彩阅读:重大信号!中国新能源产业将迎新一轮爆发!刚刚!南北大众停产!中国燃油车全面禁售时间表发布!特斯拉太牛了.....和解了!国务院正式发布:《新能源汽车产业发展规划(2021—2035年)》(附解读)大玩家来了!苹果汽车跑步入场,百年汽车正在被颠覆!新华社痛批特斯拉:有什么资格膨胀和傲娇?严惩!一汽集团处分153人,处理376家合作商突发!1死2伤,特斯
电动知家
2022-03-08
3871浏览
动力电池失效模式汇总
点击上面↑“电动知家”可以订阅哦!研究动力电池系统的失效模式对提高电池寿命、电动车辆的安全性和可靠性、降低电动车使用成本有至关重要的意义。本文从动力电池系统外在表现失效模式探索和后果进行分析并提出相应处理措施。在动力电池系统设计时考虑各种失效模式以提高动力电池安全性。动力电池系统通常由电芯、电池管理系统、Pack系统含功能元器件、线束、结构件等相关组建构成。动力电池系统失效模式,可以分为三种不同层
电动知家
2021-08-09
3092浏览
法雷奥公司FMEA培训资料,失效模式及后果分析!
来源 | 质量与检验智库 | 云脑智库(CloudBrain-TT)云圈 | 进“云脑智库微信群”,请加微信:15881101905,备注研究方向- The End -声明:欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学
云脑智库
2021-07-26
1820浏览
TWT的失效模式和机理
本文节选自《电子微组装可靠性设计》真空电子器件是发明最早的一类电子器件,真空电子器件是利用处于真空气体媒质中的电子(或离子)发生的各种效应,而产生、放大、转换电磁波信号的有源器件。目前的主要管型有行波管、速调管、磁控管。而行波管在大功率、宽频带、长寿命方面占绝对优势。尽管半导体器件在很多场合已取代了真空电子器件,但由于半导体器件是基于载流子在固体中运动的工作机理而研发的,这就使得半导体器件在工作频
可靠性杂坛
2021-05-03
1004浏览
TWT的失效模式和机理
本文节选自《电子微组装可靠性设计》 真空电子器件是发明最早的一类电子器件,真空电子器件是利用处于真空气体媒质中的电子(或离子)发生的各种效应,而产生、放大、转换电磁波信号的有源器件。目前的主要管型有行波管、速调管、磁控管。而行波管在大功率、宽频带、长寿命方面占绝对优势。尽管半导体器件在很多场合已取代了真空电子器件,但由于半导体器件是基于载流子在固体中运动的工作机理而研发的,这就使得半导体器件在工
可靠性杂坛
2021-05-03
1923浏览
SiP失效模式和失效机理
SiP组件的失效模式主要表现为硅通孔(TSV)失效、裸芯片叠层封装失效、堆叠封装(PoP)结构失效、芯片倒装焊失效等,这些SiP的高密度封装结构失效是导致SiP产品性能失效的重要原因。 一、TSV失效模式和机理 TSV是SiP组件中一种系统级架构的新的高密度内部互连方式,采用TSV通孔互连的堆叠芯片封装结构,如图1所示。TSV的工艺缺陷是导致其通孔互连失效的主要原因,有关TSV的工艺缺陷主要有
云脑智库
2021-05-01
2103浏览
正在努力加载更多...
广告
今日
新闻
1
寻找锂离子替代品的竞赛愈演愈烈
2
物理智能:打破数字壁垒,让AI触摸真实世界
3
索尼或拆分低利润率的半导体子公司
4
北京新政支持民营企业采购自主可控 GPU,买谁家的好?
5
用PWM编程LM317恒流源:多方案汇总
6
康佳集团实控人变更为中国华润
7
加速推动大模型广泛应用,三大算力痛点何解?
8
特朗普政府AI政策调整:取消国家分级,转向“芯片外交”
热门
文章排行
1
传中国对部分美国芯片加征关税豁免:125%降至0
52RD
3142
2
传中国对部分美国芯片加征关税豁免:125%降至0
射频美学
2907
3
传!部分美国产芯片获中国125%关税豁免
芯极速
2739
4
闭环!DeepSeek-R2与华为深度合体,昇腾芯片利用率达82%;推理成本较GPT-4下降了97.4%!
飙叔科技洞察
2271
5
重磅!华为AI芯片910C将于5月量产出货,920也在路上了!
飙叔科技洞察
2239
6
中国对部分美国芯片加征关税豁免:125%降至0
芯片视界
2216
7
储能行业中的“五大四小”是什么?
锂电联盟会长
2059
8
传中国对部分美国芯片免征关税!
皇华电子元器件IC供应商
1907
9
美国要破防了!DeepSeekR2将彻底摆脱英伟达,全部基于华为芯片
快科技
1773
10
曝蔚来一智驾技术大佬离职!
谈思汽车
1673
11
DeepSeekR2要来了!看点大爆料
ittbank
1660
12
突发!传中国对部分美国芯片免征关税!
ittbank
1357
13
华为激进!Mate80塞进大风扇,麒麟性能这下爆发了
手机技术资讯
1321
14
iQOOZ10TurboPro发布:特爆越级,样样超Pro
Qualcomm中国
1231
15
泡沫正在破灭!英伟达高位下跌60%正在成为现实
美股研究社
1182
16
2025上海车展智驾域控制器方案大盘点(共28家)
汽车电子与软件
1177
17
2025上海车展前瞻报告:创新智联自主竞逐高端
智车文库
1142
18
CIS全球出货排名TOP3:中国包揽两席!
EETOP
1109
19
传华为接洽多家企业,测试昇腾910D
芯极速
854
20
小米推出首个大模型MiMo,赶超OpenAI阿里
WitDisplay
800
21
传海关通知:符合条件的美产芯片豁免关税
贞光科技
793
22
粤芯半导体启动IPO辅导!国产射频芯片厂商锐石创芯拟A股IPO!
飙叔科技洞察
773
23
中国台湾将实施“N-1”限制,禁止台积电出口最先进制程技术!
飙叔科技洞察
732
24
索尼Xperia1VII真机首曝:手机行业唯一清流设计
快科技
710
25
IDC:2025年Q1中国折叠屏手机出货增长53.1%,华为份额超75%
ittbank
703
26
PCI总线到底是什么?PCI总线是串行还是并行?PCIE5.0哪些主要指标呢?
Keysight射频测试资料分
626
27
编程语言4月排名榜单:C++排名第二!
OpenCV学堂
603
28
394号文重磅发布,储能有何影响?
行家说储能
602
29
SiC收入超13亿!三安、意法等企业披露近况
第三代半导体风向
568
30
总投资达50亿元!又一金刚石半导体项目签约
DT半导体材料
551
广告
最新
评论
更多>>
学习了
青青水草
评论文章
2025-04-22
湿度正在偷偷毁掉你的基准源精度!
good,.
mhlyjay
评论文章
2025-04-22
MOS管损耗理论计算公式推导及LTspice仿真验证
资料
文库
帖子
博文
1
自动控制原理++上册,黄家英,第二版
2
微弱直流电压信号采集
3
车规级功率半导体技术现状、挑战与发展趋势
4
C#+WPF+Opencv模块化开发视觉对位运动控制系统
5
100v的过流保护Efuse介绍
6
[完结14章]RAG全栈技术从基础到精通 ,打造高精准AI应用
7
如何使用英飞凌IGBT7设计高性能伺服驱动器
8
[鸟哥的Linux私房菜:服务器架设篇(第二版)].鸟哥.扫描版
9
【2025新品】java-antd-web3全栈dapp开发教程
10
【Winform+WPF】喷涂工艺SCADA采集监控上位机
1
【2025面包板社区内容狂欢节】发文、回帖赢25万E币!
2
差分晶振的输出方式有哪几种呢
3
【敏矽微ME32G030系列】+初识及测试开发板(外接继电器)
4
【拆解】某斑学习思维机
5
电解电容寿命能不能满足5年?固态电容的寿命是不是要更...
6
【敏矽微ME32G030系列】+初识篇
7
IU5209E升压充电管理芯片
8
MacBook扩展坞怎么选?
1
浪潮之上:智能时代的觉醒
2
资安及护眼 –防窥片的常见问题及测试要点
3
连续流型液氮恒温器核心特点解析
4
营收净利双暴跌,股价腰斩,老板电器任富佳当不好老板
5
芯知识|小体积语音芯片方案WTV/WT2003H声音播放ic应用解析
6
T3出行的破局之路在何方?
7
贴片电感和贴片电容的区分方法
8
宁德时代,无孔不入
1
MOSFET结构及其工作原理详解
2
电动汽车底盘常见故障处理方法
3
嵌入式硬件--开关电源Buck电路
4
芯片制造技术之键合技术
5
电流检测,采样电阻Rshunt切换电路设计
6
新“焊武帝”元器件焊接思路简析
7
手机充电器插入排插时打火花是怎么回事?
8
电子封装陶瓷基板及其金属化工艺
9
五种总线协议(UART、RS232、RS485、IIC、SPI)
10
一篇文章告别锂离子电池知识盲区
在线研讨会
利用氮化镓技术打造高效电机驱动——人形机器人、无人机与电动汽车应用
ADMT4000重新定义多圈编码器设计
NSSine™系列实时控制MCU在数字电源和电机控制领域的应用
ST 在大功率热管理系统中的电机控制系统方案(AI 数据中心/暖通空调/电池储能系统/变频制冷)
EE直播间
中小数字IC云仿真加速方案:弹性资源与验证效率提升
直播时间:05月22日 10:00
E聘热招职位
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
寻找锂离子替代品的竞赛愈演愈烈
物理智能:打破数字壁垒,让AI触摸真实世界
索尼或拆分低利润率的半导体子公司
北京新政支持民营企业采购自主可控 GPU,买谁家的好?
用PWM编程LM317恒流源:多方案汇总