社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
IIC Shanghai 2023
2023(第四届)国际 AIoT 生态发展大会
全球 MCU 生态发展大会
第四届临港半导体产业高峰论坛暨司南科技奖颁奖盛典
IIC Shenzhen 2023
第四届中国国际汽车电子高峰论坛
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
帖子
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
×
提示!
您尚未开通专栏,立即申请专栏入驻
帖子
博文
用户
芯语
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
如何产生
固态电池的电压波动是如何产生的?
点击左上角“锂电联盟会长”,即可关注! 固态锂金属电池(ASSLBs)是解决锂离子电池安全问题的下一代电池的典范。在ASSLBs中,排除了易燃的有机液态电解质,而固态电解质同时充当锂离子导体和正负极隔膜。特别是,与常规锂离子电池系统高度兼容的复合固态电解质(CSEs),被认为是首批商业化ASSLBs最现实的候选固态电解质。过去十年中,通过将聚氧化乙烯(PEO)与无机填料(例如,Al2O3
锂电联盟会长
2024-12-19
80浏览
运放供电设计如何产生负电压
击上方名片关注了解更多本文讨论了运放供电设计中如何通过并联电阻实现负电压,提到了ICL7662的替代方案及其优缺点。此外,文章还介绍了BUCK、BOOST电路在产生负电压的应用,特别提示了LM2576和LM2596的使用注意事项。 文章目录运放供电设计如何产生负电压BUCK电路BOOST电路产生负电压FLYBUCK产生负电压运放供电设计运放的供电应用什么是纹波?纹波(ripple)的定义是指在直流
硬件笔记本
2024-09-10
528浏览
电源纹波如何产生及避免
关注+星标公众号,不错过精彩内容来源 | 电子工程师笔记大部分交流转直流的电源都存在纹波,那么电源纹波如何产生及避免?1 何为纹波由于直流稳定电源一般是由交流电源经整流稳压等环节而形成的,这就不可避免地在直流稳定量中多少带有一些交流成分,这种叠加在直流稳定量上的交流分量就称之为纹波。纹波的成分较为复杂,它的形态一般为频率高于工频的类似正弦波的谐波,另一种则是宽度很窄的脉冲波。对于不同的场合,对纹波
strongerHuang
2024-07-26
732浏览
锂电池的电压和容量是如何产生的?
点击左上角“锂电联盟会长”,即可关注!如果将灯连接到锂电池,电流就会流动,灯就会开始发光。但为什么会发生这种情况呢?为什么电池放电后电压会下降?这与锂离子的浓度有什么关系?为什么电极类型会影响电池的容量?本文提供了答案。锂基电池——无论是固态电池还是传统锂离子电池——在结构上基本相似。有两个电极(正极和负极),其间有隔膜。充电时,离子从正极(阴极)迁移到负极(阳极),放电时,离子再次迁移回来。由于
锂电联盟会长
2024-07-18
611浏览
永磁同步电机反电势是如何产生的?为什么叫反电势呢?
点击上方蓝字关注我们吧 1.反电势是如何产生的? 其实反电势的产生很好理解,记忆力稍好的同学都应该知道早在初中和高中时就已经接触过,只是当时的叫法是感应电动势,其原理就是导体切割磁感线,只要两者有相对运动就行,可以是磁场不动,导体切割;也可以是导体不动,让磁场动。对于永磁同步电机而言,其线圈固定在定子上(导体),永磁体固定在转子上(磁场),当转子转动时,转子上的永磁体产生的磁场就会
电动车千人会
2024-07-04
2465浏览
基础|锂电池化学:电池的电压和容量是如何产生的?
点击左上角“锂电联盟会长”,即可关注!如果将灯连接到锂电池,电流就会流动,灯就会开始发光。但为什么会发生这种情况呢?为什么电池放电后电压会下降?这与锂离子的浓度有什么关系?为什么电极类型会影响电池的容量?本文提供了答案。锂基电池——无论是固态电池还是传统锂离子电池——在结构上基本相似。有两个电极(正极和负极),其间有隔膜。充电时,离子从正极(阴极)迁移到负极(阳极),放电时,离子再次迁移回来。由于
锂电联盟会长
2024-01-25
1120浏览
【光电集成】什么是激光?它是如何产生的?
今日光电 有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来----来源:力学科普申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。 ----与智者为伍 为创新赋能----【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们诚招运营合伙人 ,对新媒体
今日光电
2023-12-31
535浏览
PCB串扰是如何产生的?
关注+星标公众号,不错过精彩内容编排 | strongerHuang微信公众号 | 嵌入式专栏做硬件的小伙伴应该都遇到过串扰的问题,可能一些要求不高的场合,串扰对我们的各种信号影响不大(产品还能正常工作),但有些场合对串扰非常敏感。今天就为大家分享一下串扰的内容。什么是串扰?串扰是两条信号线之间的耦合、信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感性耦合引发耦合电压。 PCB板层
strongerHuang
2023-11-14
758浏览
【世说设计】如何产生双极性电源,负载可以同时使用正电压和负电压?
台式电源(PS)往往有偶数个端口(忽略机箱端口):一个正端口和一个负端口。使用台式电源产生正极性输出很容易:将负输出设置为GND,将正输出电压设置为正输出。产生负电源同样容易,只需将上述设置反转。但是,如何产生双极性电源,负载可以同时使用正电压和负电压?相对而言,这也很简单—只需将一个实验室通道的正端口连接到另一个通道的负端口,并称其为GND。另外两个端口(正和负)分别就是正负电源。结果得到一个三
Excelpoint世健
2023-09-27
926浏览
如何产生双极性电源,负载可以同时使用正电压和负电压?
台式电源(PS)往往有偶数个端口(忽略机箱端口):一个正端口和一个负端口。使用台式电源产生正极性输出很容易:将负输出设置为GND,将正输出电压设置为正输出。产生负电源同样容易,只需将上述设置反转。但是,如何产生双极性电源,负载可以同时使用正电压和负电压?相对而言,这也很简单—只需将一个实验室通道的正端口连接到另一个通道的负端口,并称其为GND。另外两个端口(正和负)分别就是正负电源。结果得到一个三
亚德诺半导体
2023-09-19
929浏览
基础|锂电池化学:电池的电压和容量是如何产生的?
点击左上角“锂电联盟会长”,即可关注!如果将灯连接到锂电池,电流就会流动,灯就会开始发光。但为什么会发生这种情况呢?为什么电池放电后电压会下降?这与锂离子的浓度有什么关系?为什么电极类型会影响电池的容量?本文提供了答案。锂基电池——无论是固态电池还是传统锂离子电池——在结构上基本相似。有两个电极(正极和负极),其间有隔膜。充电时,离子从正极(阴极)迁移到负极(阳极),放电时,离子再次迁移回来。由于
锂电联盟会长
2023-08-21
6829浏览
高位套牢机构,用友网络的信任危机是如何产生的?
作者 | qwer惠星@雪球导语:上半年的大幅亏损,除了云计算行业由蓝海变为红海,竞争大幅加剧之外,用友网络公司本身的问题亦是不少。7月14日,用友网络(SH:600588)发布业绩预告:“公司预计2022年上半年实现归属于母公司所有者的净亏损为2.43亿元到2.73亿元,与上年同期相比将出现亏损。这是自用友2003年上市以来,年中的最大亏损。半年报业绩变脸,由盈转亏。本是“云茅”的用友网络,何以
阿尔法工场研究院
2022-08-01
920浏览
单片机中的负电压是如何产生的?
负电压的产生电路图原理在电子电路中我们常常需要使用负电压,比如说我们在使用运放的时候常常需要建立一个负电压。下面就简单的以正5V电压到负电压5V为例说一下它的电路。通常需要使用负电压时一般会选择使用专用的负压产生芯片,但这些芯片都比较贵,比如ICL7600,LT1054等。差点忘了MC34063了,这个芯片使用的最多了,关于34063的负压产生电路这里不说了,在datasheet中有的。下面请看我
嵌入式ARM
2022-01-30
1198浏览
【知识分享】信号振铃是什么?如何产生的?
【干货免费领】凡亿学员 Altium 124讲63页超长学习笔记:点我70G硬件设计资料汇总免费送:点我射频没有前景?工程师该如何择业:点我01信号振铃怎么产生的?信号的反射可能会引起振铃现象,一个典型的信号振铃如下图所示。那么信号振铃是怎么产生的呢?前面讲过,如果信号传输过程中感受到阻抗的变化,就会发生信号的反射。这个信号可能是驱动端发出的信号,也可能是远端反射回来的反射信号。根据反射系数的公式
凡亿PCB
2022-01-19
1881浏览
【世说设计】快来看看,如何产生低噪声电压?
▶线性稳压器特别适合用来滤除开关稳压器产生的电压。开关稳压器总会产生一定量的输出电压纹波。在许多处理非常小的信号的应用中,这种纹波可能会造成干扰。通常使用无源组件来滤除开关稳压器的输出电压,但LC滤波器等无源滤波器(请参阅图1)存在一些缺点。根据滤波器所需的截止频率,有时空间要求会相当大,而且电感器成本高昂。不过,无源滤波器的最大缺点是滤波器会增加一些损耗和随工作电流变化的输出电压(如同图1中的
Excelpoint世健
2021-11-11
906浏览
赛道是如何产生的?
简 介: 介绍了全国大学生智能车赛道设计的过程。关键词: 智能车竞赛,赛道设计,车模01 统一赛道设计 每年全国大学生智能车竞赛考察了参赛同学们制作的车模作品在现场赛道上运行的性能。经过了一个多学期的准备,同学们的车模需要能够完成比赛规则中所有标准的赛道元素以及比赛任务。但现场赛道究竟是什么样?这需要在比赛现场才能够揭晓。 那么竞赛组委会每年竞赛设计现场比赛赛道是如何产生的呢? 首先第一步,
TsinghuaJoking
2021-11-03
1028浏览
快来看看,如何产生低噪声电压?
▶线性稳压器特别适合用来滤除开关稳压器产生的电压。开关稳压器总会产生一定量的输出电压纹波。在许多处理非常小的信号的应用中,这种纹波可能会造成干扰。通常使用无源组件来滤除开关稳压器的输出电压,但LC滤波器等无源滤波器(请参阅图1)存在一些缺点。根据滤波器所需的截止频率,有时空间要求会相当大,而且电感器成本高昂。不过,无源滤波器的最大缺点是滤波器会增加一些损耗和随工作电流变化的输出电压(如同图1中的
亚德诺半导体
2021-10-31
994浏览
信号完整性基础:反射是如何产生的?
要说明白反射,需要涉及前文提到过阻抗及匹配的概念,形象来说,如下图,如同拼图游戏一般,红色方块太大,或者太小都放不进空格中,会产生信号完整性问题;只有匹配上,才能正好放进去,没有反射。具体的,前文说到了特性阻抗,我们熟知实际电路中最大功率传输定理是关于负载与电源相匹配时,负载能获得最大的功率。迁移到高速电路中,其表现是:激励电路特性与传输线特性极大地影响了从一个装置传送到另一个装置信号的完整性。具
面包板社区
2021-10-29
1447浏览
干货 | 单片机中常用的负电压是如何产生的?
在电子电路中我们常常需要使用负电压,比如说我们在使用运放的时候需要建立一个负电压。下面就简单的以正5V电压到负5V电压为例,说一下它的电路。 通常需要使用负电压时一般会选择专用的负压产生芯片,但这些芯片都比较贵,比如ICL7600,LT1054等。差点忘了MC34063了,这个芯片使用的最多了,关于34063的负压产生电路这里不说了,在datasheet中有的。下面请看我们在
电子工程世界
2020-12-09
673浏览
单片机中常用的负电压如何产生?原理分析
在电子电路中我们常常需要使用负电压,比如说我们在使用运放的时候需要建立一个负电压。下面就简单的以正5V电压到负5V电压为例,说一下它的电路。 通常需要使用负电压时一般会选择专用的负压产生芯片,但这些芯片都比较贵,比如ICL7600,LT1054等。差点忘了MC34063了,这个芯片使用的最多了,关于34063的负压产生电路这里不说了,在datasheet中有的。下面请看我们在单片机电子电路中
电源Fan
2020-09-30
1679浏览
单片机C语言如何产生随机数
随机数在单片机的应用中也是很多的,当然产生随机数的方法有很多,当中有一个就是利用单片机定时器,取出未知的定时器THX和TLX的值,再加以运算得到一个规定范围内的随机数值。这做法也是可行的。或者预先写好一个随机数表,然后进行取数据。也是可以的。 KEIL里面产生随机数的函数确实是rand(),但
EDN电子技术设计
2020-05-02
1623浏览
电感磁芯损耗是如何产生的?
我们知道电感磁芯是很多电子产品中都会用到的产品,比如:手机,变压器等等,电子产品在使用过程中都会产生一定的损耗,而电感磁芯也不例外。如果电感磁芯的损耗过大,就会影响电感磁芯的使用寿命。电感磁芯损耗(主要包括磁滞损耗和涡流损耗两部分)的特性是功率材料的一个最主要的指标,它影响甚至决定了整机的工作效率、温升、可靠性。什么是电感?电感是把电能转化为磁能而存储起来的元件,它只阻碍电流的变化,有通电与未通电
面包板社区
2019-12-17
1999浏览
单片机C语言如何产生随机数?
随机数在单片机的应用中也是很多的,当然产生随机数的方法有很多,当中有一个就是利用单片机定时器,取出未知的定时器THX和TLX的值,再加以运算得到一个规定范围内的随机数值,这种做法也是可行的;或者预先写好一个随机数表,然后从表中取数据也是可以的。KEIL里面产生随机数的函数确实是rand(),但头文件是stdlib.h,不是time.h。C语言提供了一些库函数来实现随机数的产生。C语言中有三个通用的
贸泽电子设计圈
2019-11-26
3010浏览
如何产生低噪声电压?这篇文章告诉你~
线性稳压器特别适合用来滤除开关稳压器产生的电压。开关稳压器总会产生一定量的输出电压纹波。在许多处理非常微弱的信号的应用中,这种纹波可能会造成干扰。通常使用无源组件来滤除开关稳压器的输出电压,但LC滤波器等无源滤波器(请参阅图1)存在一些缺点。根据滤波器所需的截止频率,有时空间要求会相当大,而且电感器成本高昂。不过,无源滤波器的最大缺点是滤波器会增加一些损耗和随工作电流变化的输出电压(如同图1中的V
贸泽电子设计圈
2019-11-13
1052浏览
EMI信号是如何产生的?
电磁干扰(EMI)已经成为我们生活的一部分,要不要处理呢?许多人认为,电子解决方案的广泛应用是一件好事,因为它给我们的生活带来舒适、安全的享受,并把医疗服务带到我们的身边。但是,这些解决方案同时也产生了具有电子危害的EMI信号。EMI信号的源头各种各样,其中包括我们身边常见的一些电子设备。小汽车、卡车和重型车辆本身就是EMI信号的产生器。问题在于,这些EMI源与敏感电子电路位于同—车辆内,会影响音
贸泽电子设计圈
2019-09-30
1465浏览
正在努力加载更多...
广告
今日
新闻
1
斥资1600亿日元,日本政府全力扶持本土芯片设计产业
2
横向对比考毕兹振荡器和克拉泼振荡器
3
英特尔前首席架构师加入高通任高级副总裁
4
Arm 技术预测:2025 年及未来的技术趋势
5
不可靠!这7家美国企业被商务部列入清单
6
继美光、三星、Kioxia,SK Hynix计划减少NAND闪存产量10%
7
实测特斯拉“迄今为止最强FSD“:何小鹏找的两个BUG未解决,还新增5个问题
8
寒武纪:历史首次单季度转正,引发热议
热门
文章排行
1
500多名员工签证有问题,比亚迪或被巴西重罚!
谈思汽车
1914
2
美国扩大封杀!7nm变16nm!
集成电路IC
1668
3
特朗普,会见扎克伯格!
科创板日报
1418
4
史无前例!华为Pura80多项自研新技术落地,影像之王几乎没跑了!
飙叔科技洞察
1375
5
RTX5090D、5080国内上市日期确认!大年初二
硬件世界
1349
6
美国拟管制16nm!
半导体工艺与设备
1301
7
传美国对大陆芯片限制:从7nm降到16nm
strongerHuang
1206
8
富士康撤离印度!
集成电路IC
1154
9
最后的疯狂!美国将全面禁止向中国出口AI芯片,禁令升级为全球性限制!
飙叔科技洞察
1098
10
2025CES英伟达发布洞察:AgenticAI/PhysicalAI快速落地,未来已来
Vehicle
1011
11
确实厉害!这几家保险公司停止保险后,加州火灾就爆发了
阿尔法工场研究院
967
12
士兰微+清纯宣布联手:目标8吋、沟槽SiCMOS
第三代半导体风向
766
13
中国人造太阳再迎重大突破核聚变商业化远景渐明晰
科创板日报
753
14
传芯片限制:或扩至16nm!收紧AI芯片出口
芯极速
736
15
高德红外加速布局AI时代,催生红外行业新机遇
MEMS
707
16
海康机器人IPO进程更新;四向车厂商智世机器人完成A轮融资
移动机器人产业联盟
692
17
又一家新势力爆雷
一览众车
676
18
精准定制,异型无忧:西安励德实现倾斜侧壁新突破
MEMS
660
19
传今日官宣和华为合作?上汽最新回应
谈思汽车
653
20
刚刚,美国正式公布AI芯片出口新限制!但有例外…
芯通社
652
21
2025六大未来产业发展趋势与人工智能八大落地场景洞察
智能计算芯世界
638
22
脑机接口,频频迎重磅政策!
科创板日报
629
23
2025CES英特尔:PC芯片帝王在汽车业的倔强-唯一提供整体方案
Vehicle
601
24
闻泰科技解析出售ODM业务决策背后的考量
52RD
596
25
彻底终结!诺基亚智能机最后一次宣告“死亡”!
EETOP
583
26
CES2025|一览NVIDIA在CES带来的重磅发布!
英伟达NVIDIA中国
559
27
2025年会很难,这有五个建议……
悲了伤的白犀牛
536
28
预计明天美国发布最严AI芯片出口限制法规,英伟达AMD全球禁运,只配5万块
芯存社
532
29
靴子落地!美国正式推出全球AI芯片禁令:AMD、英伟达GPU禁运往中国大陆
集成电路IC
523
30
算电协同!华为指明AIDC十大趋势
科创板日报
503
广告
最新
评论
更多>>
一般喜欢标榜“打破垄断”“国x领先”的都死的比较快。嘴比手厉害
56089689_...
评论文章
2025-01-07
砺芯慧感:量产薄膜铂电阻传感器,打破国外30年垄断
我这,原先V10.5跑的好好的代码,更新V11后,单片机初始化时就不断重启
vaov_3734...
评论文章
2025-01-06
FreeRTOSV11.0升级了多项重要功能,兼容V10版本
资料
文库
帖子
博文
1
20套大厂USP电路合集
2
《相对论》(美·爱因斯坦)
3
《彩色电视机原理与维修》
4
无线传能充电器设计与实现论文
5
ISO 7637-1-2023
6
《时间简史》(霍金 著)
7
电子元器件检测技能速成
8
Processing-processing3.5.4
9
基于单片机音频信号分析仪设计论文
10
基于单片机的小车设计毕业论文
1
【工程师故事】+2024年:资深嵌入式工程师在职读研的第一年,收获颇丰
2
求助 请推荐一款8脚的DCDC , 12V 变5V的, 2A 就行,不虚标。
3
〖思路〗 反偏PN结的 四种状态
4
超低频示波器的原理和应用
5
浪拓防雷丨如何精准挑选 ESD静电保护二极管
6
阻抗分析仪和矢量网络分析仪测试阻抗有哪些异同点?
7
千兆以太网(Ethernet)的ESD/EOS防护方案
8
常见浪涌保护元件有哪些?浪涌保护元件怎么选型?
1
一文读懂,数字隔离芯片如何实现电气隔离?
2
一“眼”识熟,艾迈斯欧司朗多光谱传感技术智控食品链
3
如何在ADC性能测试场景中分析频谱泄露现象?
4
PNT、GNSS与GPS:卫星定位导航技术的清晰区分
5
超声波流量传感器将如何掀起流体计量行业的新浪潮?
6
无人机电池和电源行业发展现状及市场潜力分析报告
7
剖析光耦在室内LED屏专用电源中的应用场景和优势
8
什么是CPK?看这篇就够了
1
电路动起来更好理解,不信你看看
2
STM32入门——SPI
3
eMMC走线难度不大!多注意这些
4
24V转12V~3V降压芯片和线性LDO选型
5
常见电容的种类有哪些?
6
MLCC的选型和失效分析
7
如何在VSCode中显示空格和TAB?
8
硬件必知,常见的PMOS开关电路问题!
9
汽车磁电型、霍尔型、磁阻型传感器原理
10
如何快速寻找出板子中的地线?4个快速方法
在线研讨会
重塑机器人未来:揭秘创新芯片解决方案的颠覆力量
多路有光·精准不凡——KSW-SGM01模拟信号源发布会
迈来芯Triaxis® 3D磁传感器:汽车安全应用的优选方案
适用于安全连接的新一代PIC32CK SG/GC系列单片机
EE直播间
第三代功率半导体器件测试解决方案
直播时间:03月06日 10:00
E聘热招职位
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
斥资1600亿日元,日本政府全力扶持本土芯片设计产业
横向对比考毕兹振荡器和克拉泼振荡器
英特尔前首席架构师加入高通任高级副总裁
Arm 技术预测:2025 年及未来的技术趋势
不可靠!这7家美国企业被商务部列入清单