社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
IIC Shanghai 2023
2023(第四届)国际 AIoT 生态发展大会
全球 MCU 生态发展大会
第四届临港半导体产业高峰论坛暨司南科技奖颁奖盛典
IIC Shenzhen 2023
第四届中国国际汽车电子高峰论坛
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
帖子
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
×
提示!
您尚未开通专栏,立即申请专栏入驻
帖子
博文
用户
芯语
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
欧姆
答题|为什么串阻阻值通常是22到33欧姆,看完后不信你不懂!
上期话题为什么串阻阻值通常是22到33欧姆,看完后不信你不懂!(戳标题,即可查看上期文章回顾)Q回过头问问大家,那你们是怎么来定选择多少欧姆的串阻呢,或者你们还知道其他的端接方式吗?感谢网友们的精彩评论,下面说说高速先生的一些观点:1,经验一直是有它的参考价值的,因此大家在不仿真的情况下,选择22到33欧姆的串阻来做端接也大差不差,如果仿真了,那就可以通过扫描来确定更合适的值了,这样信号质量更加完
高速先生
2024-06-07
572浏览
为什么串阻阻值通常是22到33欧姆,看完后不信你不懂!
公众号 | 高速先生作者 | 黄刚又是一年的高考季,每当这个时候,Chris总会不自觉的发出感慨,高考那会真的是理论知识的巅峰,拿起笔来就能写出各种电路的公式,三下两除二就能推导出各种物理题目的结果。不像现在,工作多年后大多数情况下只会用仿真的方式来得到,对于各种理论计算场景都敬而远之了!趁着高考的刺激,Chris打算再挣扎下,给大家分享一篇有点理论型的文章哈!在设计上使用串阻的场景大家都见得多了
高速先生
2024-06-03
564浏览
答题|深度论证-高速走线控制100欧姆阻抗一定是最好的选择吗?
上期话题深度论证-高速走线控制100欧姆阻抗一定是最好的选择吗?(戳标题,即可查看上期文章回顾)Q列举下大家的产品在PCB设计中常见的阻抗不连续的地方,并简单描述下你们的设计优化方法?感谢各位网友的精彩评论,以下是高速先生的观点:1,首先本文以两个案例,列举了100欧姆PCB走线可能不是最好的选择,因为链路上有些阻抗不连续的点是优化不到100欧姆,因此适当的降低走线的阻抗可以在一定频段下维持阻抗的
高速先生
2024-05-28
540浏览
答题|深度论证-高速走线控制100欧姆阻抗一定是最好的选择吗?
上期话题我的板子为什么测不了损耗(戳标题,即可查看上期文章回顾)Q列举下大家的产品在PCB设计中常见的阻抗不连续的地方,并简单描述下你们的设计优化方法?感谢各位网友的精彩评论,以下是高速先生的一些观点:1,首先本文以两个案例,列举了100欧姆PCB走线可能不是最好的选择,因为链路上有些阻抗不连续的点是优化不到100欧姆,因此适当的降低走线的阻抗可以在一定频段下维持阻抗的连续性,会有一定的改善,不过
高速先生
2024-05-17
543浏览
深度论证-高速走线控制100欧姆阻抗一定是最好的选择吗?
公众号 | 高速先生作者 | 黄刚对于高速差分信号到底需要控制多少欧姆的阻抗,高速先生相信大部分工程师首先都会看下例如信号的协议文档或者芯片的文档,看看里面有没有推荐的控制阻抗值。例如像PCIE信号,在4.0之后的阻抗会明确要求按照85欧姆来控制,USB阻抗会要求控制90欧姆等。除了这一部分有明确的阻抗要求外,其他没明确要求的高速信号你们会控多少欧姆阻抗呢?就好像为什么PCB的单端走线要控制50欧
高速先生
2024-05-13
597浏览
如何利用PCB走线设计一个0.05欧姆的采样电阻
有时候,在设计电路时,需要用到一个阻值比较小的功率电阻作采样电阻,用来采样大电流。很多时候我们都会采用一个大封装的功率电阻来做,例如2010,1812,功率一般0.5W.但是我们有没有想过用PCB走线来设计一个采样电阻呢?下面介绍用PCB走线设计一个0.05欧姆的方法。先认识一下物理知识,导体的电阻率公式:R =ρL/S,其中 ρ 是特定导体的电阻率, L 是导体长度, S 是导体截面积。由上述的
PCB和原理图设计与共享
2024-05-03
577浏览
答题|PCIE的阻抗控制,到底是选择85还是100欧姆好?
上期话题PCIE的阻抗控制,到底是选择85还是100欧姆好?(戳标题,即可查看上期文章回顾)Q从解决问题的角度出发,Card3和Card4连接器所在的子板怎么设计可能可以解决目前的问题?欢迎大家畅所欲言。大家的回答还是比较到位的。熟悉我们高速先生以及经常看我们直播的铁杆们可能会比较清楚,高速信号设计,万变不离其宗的是,从系统的角度去看阻抗的连续性。针对这个案例,其实还是可以从很多方面去进行改善的。
高速先生
2024-01-05
1087浏览
PCIE的阻抗控制,到底是选择85还是100欧姆好?
公众号 | 高速先生作者 | 周伟我们经常遇到很多系统通过高速连接器相连,信号按照Pcie3或者Pcie4的协议来走线,往往很多连接器的阻抗通常是100ohm的标准,而Pcie3或者Pcie4按照协议或者芯片要求却是85ohm的标准,那么这个时候我们的线路阻抗到底是按照85还是100欧姆会比较好呢?如下是关于线路阻抗的一些芯片要求或者协议要求。总结起来就是Pcie3.0以下是100ohm,Pcie
高速先生
2023-12-18
1104浏览
射频01问?为什么射频系统是50欧姆?
关注 ▲射频美学 ▲ ,一起学习成长这是射频美学的第1470期分享。来源 | 整编;微圈 | 进微信群,加微信: RFtogether521 ;备注 | 昵称+地域+产品及岗位方向 (如大魔王+上海+芯片射频工程师);宗旨 | 看到的未必是你的,掌握底层逻辑才是。在射频系统或者部件中,为什么很多时候都是用50Ω的阻抗(有时候这个值甚至就是PCB板的缺省值)?为什么不是60Ω或70Ω呢?这个数值是怎
射频美学
2023-12-16
644浏览
射频设计,为什么选择50欧姆
50欧姆对射频人来说,是一个最最最常见的阻抗。司空见惯,以至于见怪不怪。为什么是50 欧姆?30欧姆行不行?100欧姆呢?谁定了这个标准?今天我们就来聊一聊 50欧姆 的来龙去脉。做了十多年的射频设计,终于发现,射频电路设计就是一个纠结的过程。对于我这种选择困难综合征的人来说更是如此。这种设计性能更好,那种设计体积更小,另一种设计成本更低。有没有又好又小又便宜的设计呢?我觉得应该有,所以每次都在寻
FPGA技术江湖
2023-07-05
792浏览
射频设计,为什么选择50欧姆
50欧姆对射频人来说,是一个最最最常见的阻抗。司空见惯,以至于见怪不怪。为什么是50 欧姆?30欧姆行不行?100欧姆呢?谁定了这个标准?今天我们就来聊一聊 50欧姆 的来龙去脉。做了十多年的射频设计,终于发现,射频电路设计就是一个纠结的过程。对于我这种选择困难综合征的人来说更是如此。这种设计性能更好,那种设计体积更小,另一种设计成本更低。有没有又好又小又便宜的设计呢?我觉得应该有,所以每次都在寻
FPGA技术江湖
2023-07-05
663浏览
干货|射频设计,为什么选择50欧姆?
50欧姆对射频人来说,是一个最最最常见的阻抗。司空见惯,以至于见怪不怪。为什么是50 欧姆?30欧姆行不行?100欧姆呢?谁定了这个标准?今天我们就来聊一聊 50欧姆 的来龙去脉。做了十多年的射频设计,终于发现,射频电路设计就是一个纠结的过程。对于我这种选择困难综合征的人来说更是如此。这种设计性能更好,那种设计体积更小,另一种设计成本更低。有没有又好又小又便宜的设计呢?我觉得应该有,所以每次都在寻
电子工程世界
2023-02-25
1042浏览
【旧文回顾】封装基板出厂100欧姆,测试85欧姆?
公众号:高速先生作者:陈亮封装基板(Package Substrate)是半导体芯片的载体。为芯片提供连接、保护、支撑、散热、组装等功效,以实现多引脚化,缩小产品体积、改善电性能及散热性、多芯片模块化等。我们生活中看到的芯片基本都是已经装载在封装基板上了,且基本都有外壳保护,只有一小部分会使用chip on board工艺直接实装在PCB板上。可能有小伙伴就要问了,我是做设计或者仿真的,有必要知道
高速先生
2023-02-15
786浏览
一文读懂0欧姆电阻作用
关注+星标公众号,不错过精彩内容!加入硬件工程师交流群,请点击以下连接。硬件工程师技术交流群作用1:用于跳线单层板只能一面走线,当线路比较密集的时候走线很难,使用0欧姆电阻当做跳线使用,跨过走线,省去了过孔。作用2:用于配置电路有些产品在量产时是共板设计,所谓共板设计就是,一块PCB能够适应多种产品。使用时通过贴不同位置的0R电阻,选择不同的电路。作用3:阻抗匹配预留如下,射频匹配,画图时使用0R
单机片
2023-02-09
1110浏览
答题|封装基板出厂100欧姆,测试85欧姆?
上期话题封装基板出厂100欧姆,测试85欧姆?(戳标题,即可查看上期文章回顾)Q对于封装基板阻抗雷豹觉得还能再抢救一下,各位小伙伴有什么建议吗?雷豹很感谢各位小伙伴献计献策,将大家提供的建议汇总如下:1:使用DK更低的材料进行填充,降低填充材料对走线阻抗的影响。雷豹:建议很好,后续批次封装可以跟进。2:使用对微带线阻抗影响更小的金属外壳。雷豹:理解到位,后续批次封装可以跟进。3:调整芯片输出阻抗到
高速先生
2022-12-12
1439浏览
欧姆定理是如何被提出的?
01 欧姆定理 原文来自于: 「Ohms Law: History and Biography」[1]一、前言 现如今欧姆定律是任何电类学科同学再熟悉不过的理论了, 但它的诞生以及被科学界所接纳的背后曲折故事,被 Kathy 通过生动的语言描述的令人着迷,下面让我们听听她的讲述吧。 我们大部分学习过基础物理学和电学的都学习过欧姆定理。 但是你们可能不知道在1827年,当欧姆提出他的这个闻名于
FPGA技术江湖
2022-12-08
942浏览
PCB设计为何一般控制50欧姆阻抗
电子万花筒平台核心服务 中国最活跃的射频微波天线雷达微信技术群电子猎头:帮助电子工程师实现人生价值! 电子元器件:价格比您现有供应商最少降低10%射频微波天线新产品新技术发布平台:让更多优秀的国产射频微波产品得到最好的宣传!发布产品欢迎联系管理,专刊发布!强力曝光!做PCB设计过程中,在走线之前,一般我们会对自己要进行设计的项目进行叠层,根据厚度、基材、层数等信息进行计算阻抗,计算完后一般可得到如
电子万花筒
2022-12-06
1013浏览
封装基板出厂100欧姆,测试85欧姆?
公众号:高速先生作者:陈亮封装基板(Package Substrate)是半导体芯片的载体。为芯片提供连接、保护、支撑、散热、组装等功效,以实现多引脚化,缩小产品体积、改善电性能及散热性、多芯片模块化等。我们生活中看到的芯片基本都是已经装载在封装基板上了,且基本都有外壳保护,只有一小部分会使用chip on board工艺直接实装在PCB板上。可能有小伙伴就要问了,我是做设计或者仿真的,有必要知道
高速先生
2022-12-05
792浏览
欧姆定理是如何被提出的?
01 欧姆定理 原文来自于: 「Ohms Law: History and Biography」[1]一、前言 现如今欧姆定律是任何电类学科同学再熟悉不过的理论了, 但它的诞生以及被科学界所接纳的背后曲折故事,被 Kathy 通过生动的语言描述的令人着迷,下面让我们听听她的讲述吧。 我们大部分学习过基础物理学和电学的都学习过欧姆定理。 但是你们可能不知道在1827年,当欧姆提出他的这个闻名于
云脑智库
2022-11-26
1309浏览
欧姆定理是如何被提出的?
01 欧姆定理 原文来自于: 「Ohms Law: History and Biography」[1]一、前言 现如今欧姆定律是任何电类学科同学再熟悉不过的理论了, 但它的诞生以及被科学界所接纳的背后曲折故事,被 Kathy 通过生动的语言描述的令人着迷,下面让我们听听她的讲述吧。 我们大部分学习过基础物理学和电学的都学习过欧姆定理。 但是你们可能不知道在1827年,当欧姆提出他的这个闻名于
大鱼机器人
2022-11-23
942浏览
欧姆定理是咋来的?
01 欧姆定理 原文来自于: 「Ohms Law: History and Biography」[1]一、前言 现如今欧姆定律是任何电类学科同学再熟悉不过的理论了, 但它的诞生以及被科学界所接纳的背后曲折故事,被 Kathy 通过生动的语言描述的令人着迷,下面让我们听听她的讲述吧。 我们大部分学习过基础物理学和电学的都学习过欧姆定理。 但是你们可能不知道在1827年,当欧姆提出他的这个闻名于
硬件工程师炼成之路
2022-11-23
1021浏览
欧姆定理是如何被提出的?
01 欧姆定理 原文来自于: 「Ohms Law: History and Biography」[1]一、前言 现如今欧姆定律是任何电类学科同学再熟悉不过的理论了, 但它的诞生以及被科学界所接纳的背后曲折故事,被 Kathy 通过生动的语言描述的令人着迷,下面让我们听听她的讲述吧。 我们大部分学习过基础物理学和电学的都学习过欧姆定理。 但是你们可能不知道在1827年,当欧姆提出他的这个闻名于
TsinghuaJoking
2022-11-22
900浏览
射频设计里,为什么是50欧姆???
50欧姆对射频人来说,是一个最最最常见的阻抗。司空见惯,以至于见怪不怪。为什么是50 欧姆?30欧姆行不行?100欧姆呢?谁定了这个标准?今天我们就来聊一聊 50欧姆 的来龙去脉。做了十多年的射频设计,终于发现,射频电路设计就是一个纠结的过程。对于我这种选择困难综合征的人来说更是如此。这种设计性能更好,那种设计体积更小,另一种设计成本更低。有没有又好又小又便宜的设计呢?我觉得应该有,所以每次都在寻
面包板社区
2022-09-23
1068浏览
0欧姆电阻器与跳线的电气性能及应用对比
在电子电路设计中,经常会用到0欧姆电阻器(Zero Ohm Resistor),有时也称之为跳线电阻(Zero Ohm Jumper)或跨接电阻。作为一种特殊电阻器,0欧姆电阻的阻值近乎为零,寄生电感比过孔(via)还要小,可防止高频电路产生干扰,在大规模生产中的安装成本比跳线低,因此在BOM表中的用量也不少。 电气性能0欧姆电阻的阻值并非真正为零,只是针对相关应用电路起到了“0欧姆”作用而已。
面包板社区
2022-08-03
1710浏览
干货|聊聊栅极电阻为什么要取100欧姆?
看到一篇推文,“Why 100Ω? 较真的教授发现简单结论背后不简单的问题”,对MOSFET管栅极为什么放置“一个约100Ω串联电阻”进行讨论。推文一开始就讲到:只要问任何经验丰富的电气工程师——如我们今天故事里的教授 Gureux ——在 MOSFET 栅极前要放什么,你很可能会听到“一个约 100 Ω 的电阻”。虽然我们对这个问题的答案非常肯定,但你们或许会继续问——“为什么呢?他的具体作用是
电子工程世界
2022-08-03
2809浏览
正在努力加载更多...
广告
今日
新闻
1
供需两端复苏,11月中国制造业PMI释放积极信号
2
中国重塑全球电动汽车市场,美欧汽车制造商面临巨大挑战
3
韩系动力电池今年三季度全球市占率降至23.4%,中国企业占据半壁江山
4
全球工厂的机器人密度在七年内翻了一番
5
中国华润集团正式入主长电科技,聘任全华强为董事长
6
8英寸碳化硅扩产竞速,产能过剩拐点即将出现?
7
传三星将在折叠手机中引入玻璃背板
8
美国对东南亚光伏产品征收高额反倾销税,最高税率271%!
热门
文章排行
1
各大车企付款周期汇总
一览众车
1757
2
突发!美国再次出手!对中国140家芯片公司重大打击!
集成电路IC
1479
3
美国欲限制140家中国芯片公司,包含多家设备巨头
半导体工艺与设备
985
4
卫星通信、UWB、星闪…华为Mate70发布会太炸了!
物联传媒
861
5
打破日本垄断!两大国产HBM芯片材料厂商强强联合,产销跃居全球第二!
飙叔科技洞察
776
6
这,才是今天华为Mate70最大的惊喜!
快科技
679
7
日本一水坝现巨型哥斯拉壁画:预计明年1月底将消失
快科技
469
8
华为Mate70搭载的麒麟9020芯片有多强悍?!
凡亿PCB
422
9
华为Mate70发布,销量或超千万!
WitDisplay
413
10
中国芯片新锐50强
贞光科技
413
11
新一代麒麟到底啥水平!华为Mate70系列麒麟9020处理器跑分揭秘
快科技
405
12
比亚迪智驾团队重大人事变动!
谈思汽车
389
13
走近ISSCC2025:把脉技术趋势,洞察技术前沿
芯思想
379
14
【重磅发布】12月5-7日,金刚石前沿应用、宽禁带半导体、超硬材料、超精密加工…第八届国际碳材料大会暨产业展览会,上海见
DT半导体材料
309
15
马斯克遭遇重击:加州狙击特斯拉致其股价暴跌
国纳科技匠
297
16
华为、联想、美的、小米、海尔、格力等中国35家电子家电公司2024年第三季度财报汇总
全球TMT
296
17
“史上最强大Mate”正式发布!华为Mate70系列起售价5499元
CINNOResearch
293
18
传小米2025年正式发布自研3nmSoC芯片
皇华电子元器件IC供应商
276
19
国内一GaN项目宣布投产,明年大规模推广
第三代半导体风向
265
20
舜宇光学高层变动,孙泱辞任执行董事兼行政总裁
52RD
264
21
“萝卜快跑”落地中国香港,百度终于“守得云开见月明”?
美股研究社
257
22
预计售价100~150万元,华为首款百万级豪车尊界S800正式亮相
谈思实验室
250
23
美国HBM禁令,将于12月6日发布
芯极速
244
24
极氪副总裁入职奇瑞系公司!
谈思汽车
238
25
牙膏挤爆!iPhone17八大升级,苹果史无前例的巨变
手机技术资讯
232
26
一文掌握英伟达全系列GPU
智能计算芯世界
231
27
华为Mate70Pro“纯血鸿蒙版”来了!无法兼容安卓!
飙叔科技洞察
224
28
牙膏挤爆!iPhone17八大升级,苹果史无前例的巨变
快科技
214
29
全球首个可量产UWB雷达泊车方案亮相,这家企业率先抢占新风口
高工智能汽车
213
30
不到5%!国产存储芯片急需突破!全球存储芯片市场“冰火两重天”?
飙叔科技洞察
212
广告
最新
评论
更多>>
zanzanzan
洪正安
评论文章
2024-11-29
Allegro17.4常用系统参数的设置
xuexixuexi
dkjggger
评论文章
2024-11-27
携手共筑绿色未来:同方威视护航第29届联合国气候变化大会
资料
文库
帖子
博文
1
《论系统工程》(第2版,钱学森 著,1988年10月修订版)
2
《工程控制论》(钱学森 著,戴汝为 等 译,科学出版社,1958年)
3
JESD204B协议读书笔记
4
《导弹与航天技术概论》教材
5
激光加工
6
ADS SI 仿真分析与设计
7
开关稳压器的特性与评估方法
8
超声波测距模块官方指南
9
数字通信第五版及习题答案
10
《大学数学系自学丛书:微分几何》(1983年)★ 经典
1
《十万个为什么》Excel 问题与答案 得分 比较游戏 规则
2
这里二极管是什么作用?
3
封装衬底的铜皮如何转换成焊盘,或者直接添加一个管脚序号
4
【东软载波 ES32VF2264 开发板】环境搭建和开箱测评打印数据
5
电流回路示意图,对不对?这样也采不到负载(灯)的电流吧?要怎么更改才能采集到灯头(负载)的电流
6
【东软载波 ES32VF2264 开发板】05 基础功能测试——ADC
7
【Arduino uno教程 】(六)串口通信,发送与接收
8
浪拓(TSS)固态放电管的特点及应用电路
1
简析光耦的基本原理和其在光伏逆变器产品中的重要作用
2
豹8出圈,比亚迪高端化稳了?
3
RDDI-DAP错误
4
戴上XR眼镜去"追龙"!《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕
5
《高速PCB设计经验规则应用实践》+PCB绘制学习与验证
6
11-29学习笔记
7
远红之光来袭,艾迈斯欧司朗 GF CSSRML.24 样片秀
8
国产光耦合器的创新和产品多样性
1
c 语言 char 类型变量的取值范围要注意的
2
正弦稳态电路分析-阻抗和导纳的计算(ppT)
3
8通道RTD数据采集模块原理图分析
4
贴片功率电感失效原因
5
纯电动汽车电池管理系统及工作模式
6
磁饱和变压器可以用来做什么?
7
新能源汽车产业链核心供应商盘点
8
瑞萨ISL81802双通道同步降压控制器设计经验分享
9
高速信号处理时,如何控制开关稳压器的脉动?
10
设计分享:用ADUX1020评价板搞一个手势传感器
在线研讨会
uModule DC/DC稳压器 - 减少热量、增加功率
ADAS系统中采用的MEMS时钟
PLL基础知识及其在时钟系统中的应用
PIC16F13145单片机可配置逻辑模块(CLB)概览
EE直播间
无线前沿新技术与测试技术峰会-线上直播
直播时间:12月05日 09:30
首场直播发布: Keysight AP5000 系列新型高性价比模拟信号源
直播时间:12月06日 10:00
功率表的基础知识及其校准
直播时间:12月10日 10:00
提升毫米波信号测试精度
直播时间:12月18日 14:00
E聘热招职位
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
供需两端复苏,11月中国制造业PMI释放积极信号
中国重塑全球电动汽车市场,美欧汽车制造商面临巨大挑战
韩系动力电池今年三季度全球市占率降至23.4%,中国企业占据半壁江山
全球工厂的机器人密度在七年内翻了一番
中国华润集团正式入主长电科技,聘任全华强为董事长