社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
2025 中国国际低空经济产业创新发展大会
2025 第六届国际 AIoT 生态发展大会
2025 全球 MCU 生态发展大会
2025 第六届中国国际汽车电子高峰论坛
IIC Shenzhen 2025
2025国际电子商情分销与供应链行业年会
IIC Shanghai 2025
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
登录|注册
芯语
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
首页
热门
专栏作家
电子产业热词
CEO专栏
技术文库
科技头条
专栏入驻
×
提示!
您尚未开通专栏,立即申请专栏入驻
芯语
帖子
博文
用户
芯语
登录
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
开漏输出
AMEYA360代理|江苏润石高压开漏输出高速比较器RS8920
RS8920是一款高压高速比较器,在通用高压比较器的基础上,大幅提升比较器的响应时间,将High to Low群延迟时间降低到100纳秒以内,以满足需要快速响应的应用,比如光伏逆变系统的过流检测、充电桩快充系统的过流检测,以达到快速切断电流通路,降低系统风险的目的。RS8920的主要特性☆High to Low群延迟:55ns( Overdrive=100mV)75ns( Overdrive=20
皇华电子元器件IC供应商
2025-03-18
93浏览
关于STM32F1开漏输出的误解
来源:公众号【鱼鹰谈单片机】作者:鱼鹰OspreyID :emOsprey 正文有些 IO 可能作为双向输出,比如 I2C 的 SDA 引脚,如果配置成推挽输出(push-pull),那么当要读取 应答信号或者读取 i2c 数据时,需要重新配置 IO。因此,很多教程会建议配置成开漏输出(open-drain),这样就不需要来回配置输出方向。这里需要注意的一点是,不管是开漏还是推挽输出,作为
鱼鹰谈单片机
2024-05-13
749浏览
为什么开漏输出要加上拉电阻
扫码免费观看长按识别课程介绍:
凡亿PCB
2024-03-30
483浏览
软件工程师调软件时,IO控制LED一直关不掉,我第一时间就知道原因,让他把IO口配成开漏输出,问题就解决了。
软件工程师在调试软件时,遇到一个奇怪的问题。就是电路上用了一个IO口直接控制一个LED的亮灭,没有经过三极管做开关来控制,但是LED一直灭不了,软件上把IO口置0,LED就高亮,把IO口置1,LED变暗了,却灭不了。软件工程师试了很多方法,都没有找到原因。怀疑是IO配置有问题,把IO由普通IO输出模式配置成推挽输出模式,没有效果,LED灭不了。怀疑是闪烁频率太快,把PWM取消,让IO口置1,一直输
PCB和原理图设计与共享
2024-02-02
658浏览
从硬件角度分析GPIO的推挽输出和开漏输出
扫描关注一起学嵌入式,一起学习,一起成长大家好,今天分享一篇关于GPIO推挽输出和开漏输出的文章,彻底搞明白他们的工作原理。关于STM32单片机的GPIO工作原理可以查阅之前的推文:详解 STM32 单片机 GPIO 的工作原理推挽输出:可以输出高,低电平,连接数字器件。 输出 0 时,N-MOS 导通,P-MOS 高阻,输出0。 输出 1 时,N-MOS 高阻,P-MOS 导通,输出1(不需要外
一起学嵌入式
2023-07-02
1765浏览
基础小结|推挽输出和开漏输出
点击上方名片关注了解更多一、推挽输出1.1推挽输出的概念推挽(push-pull)输出是由两个MOS或者三极管组成,两个管子始终保持一个导通,另一个截止的状态。图1 推挽电路示意图当输入高电平时,叫做推;上管Q1导通,下管Q2关闭;电流走向VCC→Q1→Vout。图2 高电平输入,推当输入低电平时,叫做挽;上管Q1关闭,下管Q2导通;电流走向Vout→Q2→GND。图3 低电平输入,挽1.2推挽电
硬件笔记本
2022-11-25
1643浏览
IIC为什么需要用开漏输出和上拉电阻?
最近在调ICM20602模块(一个六轴陀螺仪和加速度计), 使用IIC通信协议, 这个过程中遇到一个困扰我很长时间的问题。IIC协议正确, 但是一直读取失败.最后发现因为没配置GPIO为开漏输出。推挽输出和开漏输出推挽输出: 输出逻辑0,则N-MOS激活;输出逻辑1,则P-MOS激活。开漏输出:在不接上拉电阻时, 输出逻辑0,则N-MOS激活;输出逻辑1,P-MOS不会激活, 不会输出高电平。在接
嵌入式大杂烩
2022-05-15
1047浏览
关于单片机GPIO开漏输出
1、3.3V供电单片机,开漏模式GPIO内部示意图如下所示,当内部MOS管关断时,上拉电阻的作用下,GPIO可以正常输出5V。2、3.3V供电单片机,开漏模式GPIO内部示意图如下所示,输出不足5V,因为有二极管形成电流回路。电流回路从电阻开始流经上面二极管至3.3V。当然如果外部上拉小于3.3V,则没有此问题。3、如下图所示增加二极管可以适当提高输出电压。使用时具体应用具体分析。亲身经历:我使用
单机片
2022-02-16
744浏览
单片机IO口科普:推挽输出、开漏输出详解
关注、星标公众号,直达精彩内容来源:网路素材推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右边的那
李肖遥
2022-02-15
2166浏览
单片机I/O口推挽输出与开漏输出的区别
关注、星标公众号,直达精彩内容来源:21ic电子网推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右
李肖遥
2022-01-28
2573浏览
终于搞清楚开漏输出和推挽输出这个鬼东西
先说下推挽输出,简单的说,就是想输出高电平,就输出高电平,想输出低电平就输出低电平。推挽电路上面是NPN三极管,下面是PNP三极管,请注意输入端和输出端的波形。下面是输入波形当输入为正时,上面的NPN三极管导通,电流由上往下通过,提供电流给负载使用,经过上面的N型三极管提供电流给负载使用,这就叫「推」。当输入为负时,下面的PNP三极管导通,电流由下往上通过,经过下面P型三极管提供电流给负载使用,这
鱼鹰谈单片机
2021-12-14
6979浏览
MCU引脚输出模式中推挽输出与开漏输出电路原理区别
开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为“0”时,输出也为
电源Fan
2021-10-13
1502浏览
(干货分享)MCU引脚输出模式中推挽输出与开漏输出电路原理区别
开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为“0”时,输出也为
电源研发精英圈
2021-09-28
2280浏览
IIC为什么需要用开漏输出和上拉电阻?
最近在调ICM20602模块(一个六轴陀螺仪和加速度计), 使用IIC通信协议, 这个过程中遇到一个困扰我很长时间的问题。 IIC协议正确, 但是一直读取失败.最后发现因为没配置GPIO为开漏输出。 推挽输出和开漏输出 推挽输出: 输出逻辑0,则N-MOS激活; 输出逻辑1,则P-MOS激活。
嵌入式ARM
2021-03-05
3039浏览
IIC为什么需要用开漏输出和上拉电阻?
最近在调ICM20602模块(一个六轴陀螺仪和加速度计), 使用IIC通信协议, 这个过程中遇到一个困扰我很长时间的问题。 IIC协议正确, 但是一直读取失败.最后发现因为没配置GPIO为开漏输出。 推挽输出和开漏输出 推挽输出: 输出逻辑0,则N-MOS激活; 输出逻辑1,则P-MOS激活。
21ic电子网
2021-02-09
2252浏览
你真的了解开漏输出吗?
这两天在思考,写公众号是不是一件有意义的事情。仔细思量后,结论是肯定的。做硬件的少,善于分享的更少,能表达清楚、坚持下来的更是少之又少。受众少,则不会对此有什么商业方面的太多期待。于我而言,更多的是把我的理解,我的经验分享出来。每次写文时候,总是要翻阅大量资料,尽量保证经验不只是经验,也是有迹可循有理可依的实践。往往这时候,我们常见的事情,反而并不容易说清楚。再有,每个人的知识储备有限,还是需要不
记得诚
2020-07-05
5815浏览
单片机IO口科普:推挽输出、开漏输出详解
其结构类似于开漏输出,只不过是把上拉电阻集成到了单片机内部。6.IO口如何应用对于推挽输出的IO口可以直接输出高低电平驱动功耗较小的数字器件,但对于开漏输出的话必须要在外部接上拉电阻才行。比如说LPC11C14单片机的片上I2C资源就是开漏输出的,如果要使用这两个引脚做输出就必须加上拉电阻,如下图所示:为了方便大家更好的学习,您还可以关注畅学电子和EDA的公众号,每天推送相关知识,希望能对你的学习
畅学单片机
2019-07-17
2103浏览
正在努力加载更多...
广告
今日
新闻
1
AI眼镜参考设计方案:以低功耗与高集成度破局轻量级市场
2
百镜大战背后的算力博弈:谁将定义AI眼镜未来?
3
英伟达CEO黄仁勋再访北京,回应H20芯片被禁
4
高性能三通道双向电源:实现更多测试与更高吞吐量
5
注入锁定充当分频器,提高振荡器性能
6
魏哲家:预计30%的2纳米以下产能将布局美国亚利桑那州
7
英飞凌XENSIV传感器技术:协同创新与场景化应用探索
8
传台积电美国厂将涨价30%
热门
文章排行
1
Github屏蔽中国IP!!中美关税大战的战火还是烧到科技圈
硬件笔记本
16752
2
突发!特朗普宣布豁免部分中国电子产品、电子元器件125%关税!附豁免产品清单
芯片之家
7118
3
什么是芯片的COO/CCO/COD/DIFF/COA/ACO?
射频美学
5870
4
美方豁免部分产品“对等关税”,中方最新回应
芯存社
4406
5
美国宣布对笔记本电脑、智能手机、半导体等豁免征收“对等关税”
CINNOResearch
3732
6
反转!即将征收芯片关税,中美已通过中间人就关税问题初步接触,Q1中美双边贸易仍保持增长,鸿海解读美国关税豁免政策影响
芯存社
2742
7
暂停接单、原产地判定...芯片人快被逼疯了!
芯世相
2688
8
微软突发“封杀令”!全面禁止Cursor使用C、C++、C#扩展,开发者被迫回退版本
C语言与CPP编程
2652
9
重磅!美国宣布对集成电路、平板电脑、智能手机、显示模组等免征收“对等关税”
芯存社
1777
10
最新动力电池国标出台:不允许起火和爆炸
谈思汽车
1639
11
美国计划进一步封杀DeepSeek
WitDisplay
1521
12
集成电路原产地认定新规详解——流片地即原产地的技术与合规分析
汽车电子与软件
1485
13
集成电路原产地新规,流片地成关键!
皇华电子元器件IC供应商
1337
14
瑞萨电子与您相约2025慕尼黑上海电子展共探“芯”力量
瑞萨MCU小百科
1292
15
电动汽车电池新国标公布:热扩散不起火、不爆炸
一览众车
1258
16
苹果Q1手机销量首次全球第一
WitDisplay
1237
17
特朗普,传出新消息
谈思汽车
1228
18
中国认定芯片流片地为原产地!对Intel、AMD、高通有什么影响?
文Q聊硬件
1217
19
中国紧急宣布!芯片流片地认定为原产地对Intel、AMD、高通有何影响
手机技术资讯
1140
20
AI含量拉满!TOP25+储能企业竞逐
行家说储能
1023
21
务必立即拿下软考证(政策红利)
李肖遥
993
22
美商务部长:面板必须在美国制造!
WitDisplay
952
23
美国宣布对显示模组/终端等豁免征收“对等关税”
WitDisplay
921
24
突发!特朗普“胁迫”台积电全产业链迁美,90%以上的5nm芯片断供?
飙叔科技洞察
891
25
重大发明!!!中国科学家研发出"全天候"超级钠离子电池
锂电联盟会长
763
26
千元天线数最多!余承东官宣华为新路由信号能穿三堵墙
文Q聊硬件
749
27
特朗普又变卦:关税没有例外!电子产品仍面临关税
CINNOResearch
748
28
无限期有效!英伟达H20限制对华出口
芯极速
728
29
GitHub屏蔽所有中国IP访问原因未知
芯片之家
701
30
2025多模态大模型洞察:大模型向多模态发展,深入产业垂直场景
智能计算芯世界
697
广告
最新
评论
更多>>
真的是,硬要逼我用ViewTurbo
用户17445...
评论文章
2025-04-13
Github屏蔽中国IP!!中美关税大战的战火还是烧到科技圈
A1,寓意,美国作为人造这一领域的第一人
自做自受
评论文章
2025-04-13
尴尬!美教育部长将AI读成Aone
资料
文库
帖子
博文
1
AD、DA转换器接口技术与实用线路-杨振江
2
IGBT并联使用要点(来源于onsemi)
3
现代传感器集成电路:通用传感器电路
4
微弱直流电压信号采集
5
多传感器信息融合及应用
6
IGBT图解
7
车规级功率半导体技术现状、挑战与发展趋势
8
头文件类型定义
9
C#+WPF+Opencv模块化开发视觉对位运动控制系统
10
[完结14章]Vue3.5+Electron+大模型 跨平台AI桌面聊天应用实战
1
【2025面包板社区内容狂欢节】发文、回帖赢25万E币!
2
已知并联电阻总阻值,算出23456个......并联电阻的阻值,比...
3
HMD3075国产首款量产型七位半万用表!青岛汉泰开启国产高...
4
差分晶振的输出方式有哪几种呢
5
cadence中如何测试鉴相器的输出电压和相差的关系
6
拆解:DMA方式WM803开发板+ST7735驱动显示TTL例程解析
7
IU5209E升压充电管理芯片
8
MDD高效率整流管的工作原理:如何降低导通损耗?
1
全球6G大会 | 紫光展锐用“芯”推动空天地一体创新纪元
2
AI帮你赢:人人都能用的AI方法论 读后感和书评,我会推荐给我的学生
3
水下装备体系论证系统软件全面解析
4
京东全球购十周年:宣布投入亿级资源,升级四大商家扶持举措
5
瑞芯微RK平台开发必备的20个常用命令,帮您效率翻倍
6
网络链路攻防战术对抗仿真系统软件全面解析
7
多极电磁铁有哪些应用
8
AI赋能,健康无界:WT2605C语音芯片智能血压计的个性化设计方案
1
智能汽车虚拟化(Hypervisor)技术详解
2
傻傻分不清!MOS管和IGBT管有什么区别?
3
LDO稳压器电路分析、主要参数
4
一文详解ESD与EOS失效差异
5
轴向磁通盘式电机详解
6
单片机基础:GPIO、定时器、串行通信、中断
7
12V典型开关电源方案(有哪些品牌选择)
8
工程师一定要知道的电子元器件分类
9
MOS管开关电路分析(图文+案例)
10
PLC选型,你真的选对了吗?
在线研讨会
迈来芯新一代经济型热成像技术:赋能电力电子过热保护与智能应用温度监控
ADI 应用于电池管理系统 (BMS) 的电芯监测解决方案
利用氮化镓技术打造高效电机驱动——人形机器人、无人机与电动汽车应用
ADMT4000重新定义多圈编码器设计
E聘热招职位
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
AI眼镜参考设计方案:以低功耗与高集成度破局轻量级市场
百镜大战背后的算力博弈:谁将定义AI眼镜未来?
英伟达CEO黄仁勋再访北京,回应H20芯片被禁
高性能三通道双向电源:实现更多测试与更高吞吐量
注入锁定充当分频器,提高振荡器性能