社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
IIC Shanghai 2023
2023(第四届)国际 AIoT 生态发展大会
全球 MCU 生态发展大会
第四届临港半导体产业高峰论坛暨司南科技奖颁奖盛典
IIC Shenzhen 2023
第四届中国国际汽车电子高峰论坛
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
帖子
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
×
提示!
您尚未开通专栏,立即申请专栏入驻
帖子
博文
用户
芯语
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
开漏输出
关于STM32F1开漏输出的误解
来源:公众号【鱼鹰谈单片机】作者:鱼鹰OspreyID :emOsprey 正文有些 IO 可能作为双向输出,比如 I2C 的 SDA 引脚,如果配置成推挽输出(push-pull),那么当要读取 应答信号或者读取 i2c 数据时,需要重新配置 IO。因此,很多教程会建议配置成开漏输出(open-drain),这样就不需要来回配置输出方向。这里需要注意的一点是,不管是开漏还是推挽输出,作为
鱼鹰谈单片机
2024-05-13
581浏览
为什么开漏输出要加上拉电阻
扫码免费观看长按识别课程介绍:
凡亿PCB
2024-03-30
448浏览
软件工程师调软件时,IO控制LED一直关不掉,我第一时间就知道原因,让他把IO口配成开漏输出,问题就解决了。
软件工程师在调试软件时,遇到一个奇怪的问题。就是电路上用了一个IO口直接控制一个LED的亮灭,没有经过三极管做开关来控制,但是LED一直灭不了,软件上把IO口置0,LED就高亮,把IO口置1,LED变暗了,却灭不了。软件工程师试了很多方法,都没有找到原因。怀疑是IO配置有问题,把IO由普通IO输出模式配置成推挽输出模式,没有效果,LED灭不了。怀疑是闪烁频率太快,把PWM取消,让IO口置1,一直输
PCB和原理图设计与共享
2024-02-02
533浏览
从硬件角度分析GPIO的推挽输出和开漏输出
扫描关注一起学嵌入式,一起学习,一起成长大家好,今天分享一篇关于GPIO推挽输出和开漏输出的文章,彻底搞明白他们的工作原理。关于STM32单片机的GPIO工作原理可以查阅之前的推文:详解 STM32 单片机 GPIO 的工作原理推挽输出:可以输出高,低电平,连接数字器件。 输出 0 时,N-MOS 导通,P-MOS 高阻,输出0。 输出 1 时,N-MOS 高阻,P-MOS 导通,输出1(不需要外
一起学嵌入式
2023-07-02
1158浏览
基础小结|推挽输出和开漏输出
点击上方名片关注了解更多一、推挽输出1.1推挽输出的概念推挽(push-pull)输出是由两个MOS或者三极管组成,两个管子始终保持一个导通,另一个截止的状态。图1 推挽电路示意图当输入高电平时,叫做推;上管Q1导通,下管Q2关闭;电流走向VCC→Q1→Vout。图2 高电平输入,推当输入低电平时,叫做挽;上管Q1关闭,下管Q2导通;电流走向Vout→Q2→GND。图3 低电平输入,挽1.2推挽电
硬件笔记本
2022-11-25
1204浏览
IIC为什么需要用开漏输出和上拉电阻?
最近在调ICM20602模块(一个六轴陀螺仪和加速度计), 使用IIC通信协议, 这个过程中遇到一个困扰我很长时间的问题。IIC协议正确, 但是一直读取失败.最后发现因为没配置GPIO为开漏输出。推挽输出和开漏输出推挽输出: 输出逻辑0,则N-MOS激活;输出逻辑1,则P-MOS激活。开漏输出:在不接上拉电阻时, 输出逻辑0,则N-MOS激活;输出逻辑1,P-MOS不会激活, 不会输出高电平。在接
嵌入式大杂烩
2022-05-15
976浏览
关于单片机GPIO开漏输出
1、3.3V供电单片机,开漏模式GPIO内部示意图如下所示,当内部MOS管关断时,上拉电阻的作用下,GPIO可以正常输出5V。2、3.3V供电单片机,开漏模式GPIO内部示意图如下所示,输出不足5V,因为有二极管形成电流回路。电流回路从电阻开始流经上面二极管至3.3V。当然如果外部上拉小于3.3V,则没有此问题。3、如下图所示增加二极管可以适当提高输出电压。使用时具体应用具体分析。亲身经历:我使用
单机片
2022-02-16
679浏览
单片机IO口科普:推挽输出、开漏输出详解
关注、星标公众号,直达精彩内容来源:网路素材推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右边的那
李肖遥
2022-02-15
1619浏览
单片机I/O口推挽输出与开漏输出的区别
关注、星标公众号,直达精彩内容来源:21ic电子网推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右
李肖遥
2022-01-28
2313浏览
终于搞清楚开漏输出和推挽输出这个鬼东西
先说下推挽输出,简单的说,就是想输出高电平,就输出高电平,想输出低电平就输出低电平。推挽电路上面是NPN三极管,下面是PNP三极管,请注意输入端和输出端的波形。下面是输入波形当输入为正时,上面的NPN三极管导通,电流由上往下通过,提供电流给负载使用,经过上面的N型三极管提供电流给负载使用,这就叫「推」。当输入为负时,下面的PNP三极管导通,电流由下往上通过,经过下面P型三极管提供电流给负载使用,这
鱼鹰谈单片机
2021-12-14
6340浏览
MCU引脚输出模式中推挽输出与开漏输出电路原理区别
开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为“0”时,输出也为
电源Fan
2021-10-13
1378浏览
(干货分享)MCU引脚输出模式中推挽输出与开漏输出电路原理区别
开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为“0”时,输出也为
电源研发精英圈
2021-09-28
1761浏览
IIC为什么需要用开漏输出和上拉电阻?
最近在调ICM20602模块(一个六轴陀螺仪和加速度计), 使用IIC通信协议, 这个过程中遇到一个困扰我很长时间的问题。 IIC协议正确, 但是一直读取失败.最后发现因为没配置GPIO为开漏输出。 推挽输出和开漏输出 推挽输出: 输出逻辑0,则N-MOS激活; 输出逻辑1,则P-MOS激活。
嵌入式ARM
2021-03-05
2968浏览
IIC为什么需要用开漏输出和上拉电阻?
最近在调ICM20602模块(一个六轴陀螺仪和加速度计), 使用IIC通信协议, 这个过程中遇到一个困扰我很长时间的问题。 IIC协议正确, 但是一直读取失败.最后发现因为没配置GPIO为开漏输出。 推挽输出和开漏输出 推挽输出: 输出逻辑0,则N-MOS激活; 输出逻辑1,则P-MOS激活。
21ic电子网
2021-02-09
2193浏览
你真的了解开漏输出吗?
这两天在思考,写公众号是不是一件有意义的事情。仔细思量后,结论是肯定的。做硬件的少,善于分享的更少,能表达清楚、坚持下来的更是少之又少。受众少,则不会对此有什么商业方面的太多期待。于我而言,更多的是把我的理解,我的经验分享出来。每次写文时候,总是要翻阅大量资料,尽量保证经验不只是经验,也是有迹可循有理可依的实践。往往这时候,我们常见的事情,反而并不容易说清楚。再有,每个人的知识储备有限,还是需要不
记得诚
2020-07-05
5457浏览
单片机IO口科普:推挽输出、开漏输出详解
其结构类似于开漏输出,只不过是把上拉电阻集成到了单片机内部。6.IO口如何应用对于推挽输出的IO口可以直接输出高低电平驱动功耗较小的数字器件,但对于开漏输出的话必须要在外部接上拉电阻才行。比如说LPC11C14单片机的片上I2C资源就是开漏输出的,如果要使用这两个引脚做输出就必须加上拉电阻,如下图所示:为了方便大家更好的学习,您还可以关注畅学电子和EDA的公众号,每天推送相关知识,希望能对你的学习
畅学单片机
2019-07-17
1864浏览
正在努力加载更多...
广告
今日
新闻
1
供需两端复苏,11月中国制造业PMI释放积极信号
2
中国重塑全球电动汽车市场,美欧汽车制造商面临巨大挑战
3
韩系动力电池今年三季度全球市占率降至23.4%,中国企业占据半壁江山
4
全球工厂的机器人密度在七年内翻了一番
5
中国华润集团正式入主长电科技,聘任全华强为董事长
6
8英寸碳化硅扩产竞速,产能过剩拐点即将出现?
7
传三星将在折叠手机中引入玻璃背板
8
美国对东南亚光伏产品征收高额反倾销税,最高税率271%!
热门
文章排行
1
各大车企付款周期汇总
一览众车
1757
2
突发!美国再次出手!对中国140家芯片公司重大打击!
集成电路IC
1489
3
美国欲限制140家中国芯片公司,包含多家设备巨头
半导体工艺与设备
998
4
卫星通信、UWB、星闪…华为Mate70发布会太炸了!
物联传媒
861
5
打破日本垄断!两大国产HBM芯片材料厂商强强联合,产销跃居全球第二!
飙叔科技洞察
783
6
这,才是今天华为Mate70最大的惊喜!
快科技
679
7
日本一水坝现巨型哥斯拉壁画:预计明年1月底将消失
快科技
469
8
华为Mate70搭载的麒麟9020芯片有多强悍?!
凡亿PCB
424
9
华为Mate70发布,销量或超千万!
WitDisplay
413
10
中国芯片新锐50强
贞光科技
413
11
新一代麒麟到底啥水平!华为Mate70系列麒麟9020处理器跑分揭秘
快科技
406
12
比亚迪智驾团队重大人事变动!
谈思汽车
389
13
走近ISSCC2025:把脉技术趋势,洞察技术前沿
芯思想
379
14
【重磅发布】12月5-7日,金刚石前沿应用、宽禁带半导体、超硬材料、超精密加工…第八届国际碳材料大会暨产业展览会,上海见
DT半导体材料
310
15
马斯克遭遇重击:加州狙击特斯拉致其股价暴跌
国纳科技匠
297
16
华为、联想、美的、小米、海尔、格力等中国35家电子家电公司2024年第三季度财报汇总
全球TMT
296
17
“史上最强大Mate”正式发布!华为Mate70系列起售价5499元
CINNOResearch
293
18
传小米2025年正式发布自研3nmSoC芯片
皇华电子元器件IC供应商
276
19
国内一GaN项目宣布投产,明年大规模推广
第三代半导体风向
265
20
舜宇光学高层变动,孙泱辞任执行董事兼行政总裁
52RD
264
21
“萝卜快跑”落地中国香港,百度终于“守得云开见月明”?
美股研究社
257
22
预计售价100~150万元,华为首款百万级豪车尊界S800正式亮相
谈思实验室
250
23
美国HBM禁令,将于12月6日发布
芯极速
246
24
极氪副总裁入职奇瑞系公司!
谈思汽车
238
25
牙膏挤爆!iPhone17八大升级,苹果史无前例的巨变
手机技术资讯
232
26
一文掌握英伟达全系列GPU
智能计算芯世界
231
27
华为Mate70Pro“纯血鸿蒙版”来了!无法兼容安卓!
飙叔科技洞察
224
28
不到5%!国产存储芯片急需突破!全球存储芯片市场“冰火两重天”?
飙叔科技洞察
216
29
最新禁令来了!140多家中国芯片公司被限制
谈思实验室
215
30
牙膏挤爆!iPhone17八大升级,苹果史无前例的巨变
快科技
214
广告
最新
评论
更多>>
zanzanzan
洪正安
评论文章
2024-11-29
Allegro17.4常用系统参数的设置
xuexixuexi
dkjggger
评论文章
2024-11-27
携手共筑绿色未来:同方威视护航第29届联合国气候变化大会
资料
文库
帖子
博文
1
《论系统工程》(第2版,钱学森 著,1988年10月修订版)
2
STM32HAL库手册
3
170中国新能源汽车品牌图谱
4
《工程控制论》(钱学森 著,戴汝为 等 译,科学出版社,1958年)
5
JESD204B协议读书笔记
6
《星际航行概论》(钱学森 著,科学出版社,1963年)
7
ADS SI 仿真分析与设计
8
开关稳压器的特性与评估方法
9
超声波测距模块官方指南
10
《大学数学系自学丛书:微分几何》(1983年)★ 经典
1
《十万个为什么》Excel 问题与答案 得分 比较游戏 规则
2
这里二极管是什么作用?
3
封装衬底的铜皮如何转换成焊盘,或者直接添加一个管脚序号
4
【东软载波 ES32VF2264 开发板】环境搭建和开箱测评打印数据
5
电流回路示意图,对不对?这样也采不到负载(灯)的电流吧?要怎么更改才能采集到灯头(负载)的电流
6
【东软载波 ES32VF2264 开发板】05 基础功能测试——ADC
7
【Arduino uno教程 】(六)串口通信,发送与接收
8
浪拓(TSS)固态放电管的特点及应用电路
1
简析光耦的基本原理和其在光伏逆变器产品中的重要作用
2
豹8出圈,比亚迪高端化稳了?
3
RDDI-DAP错误
4
戴上XR眼镜去"追龙"!《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕
5
《高速PCB设计经验规则应用实践》+PCB绘制学习与验证
6
11-29学习笔记
7
远红之光来袭,艾迈斯欧司朗 GF CSSRML.24 样片秀
8
国产光耦合器的创新和产品多样性
1
贴片功率电感失效原因
2
汽车底盘电控技术
3
纯电动汽车电池管理系统及工作模式
4
电动汽车或充电桩通信转换器
5
电工基础,仪表操作汇总
6
分享一份I2C通讯总结
7
瑞萨ISL81802双通道同步降压控制器设计经验分享
8
设计分享:用ADUX1020评价板搞一个手势传感器
9
在FPGA中如何确保AD9361的稳定性能?
10
利用参考时钟,实现Cyclone10LP器件的串行通信数据恢复
在线研讨会
uModule DC/DC稳压器 - 减少热量、增加功率
ADAS系统中采用的MEMS时钟
PLL基础知识及其在时钟系统中的应用
PIC16F13145单片机可配置逻辑模块(CLB)概览
EE直播间
无线前沿新技术与测试技术峰会-线上直播
直播时间:12月05日 09:30
首场直播发布: Keysight AP5000 系列新型高性价比模拟信号源
直播时间:12月06日 10:00
功率表的基础知识及其校准
直播时间:12月10日 10:00
提升毫米波信号测试精度
直播时间:12月18日 14:00
E聘热招职位
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
供需两端复苏,11月中国制造业PMI释放积极信号
中国重塑全球电动汽车市场,美欧汽车制造商面临巨大挑战
韩系动力电池今年三季度全球市占率降至23.4%,中国企业占据半壁江山
全球工厂的机器人密度在七年内翻了一番
中国华润集团正式入主长电科技,聘任全华强为董事长