社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
IIC Shanghai 2023
2023(第四届)国际 AIoT 生态发展大会
全球 MCU 生态发展大会
第四届临港半导体产业高峰论坛暨司南科技奖颁奖盛典
IIC Shenzhen 2023
第四届中国国际汽车电子高峰论坛
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
帖子
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
×
提示!
您尚未开通专栏,立即申请专栏入驻
帖子
博文
用户
芯语
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
光纤通信
【光电通信】光纤通信基本知识.pptx
今日光电 有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光引未来...欢迎来到今日光电!----追光逐电 光引未来----来源:新机器视觉申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。 ----与智者为伍 为创新赋能----【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们诚招运营合伙人 ,对新媒
今日光电
2025-01-09
46浏览
FPGA工程师就业班,02月10号开班,新增高速接口、光纤通信等内容!
听说99%的同学都来这里充电吖前言叁芯智能科技,推出FPGA就业班系列,系统性学习,高性价比选择,实打实学技术,教授学习方法,学习设计思想设计原理,分享学习以及开发经验,实战项目,理论的初步理解,从实践中结合理论,更好的深入理解,学技术,技术硬实力过关,普通高校普通的你也可以有一份不错的工作,如果你是名校,那就更好了,上班充电、行业内转岗学习深造等,各种类型技术培训,应有尽有,就业班签订就业协议,
FPGA技术江湖
2025-01-08
100浏览
长飞智能汽车光纤通信解决方案路试成功
2024年11月,长飞光纤光缆股份有限公司(以下简称“长飞”)携手东风汽车集团有限公司研发总院,在东风奕炫eπ007车型上成功完成了搭载长飞智能汽车光纤通信解决方案的道路测试。测试历时72天,行驶总里程1.2万公里,长飞智能汽车光纤通信方案在实际应用中表现出色,成功通过了所有设计测试项目。这一成果标志着车载光纤通信技术迈出了重要的一步,也展示了长飞技术在汽车行业中的应用潜力和实际效果。在襄阳综合路
线束世界
2024-12-20
149浏览
【光电通信】光纤通信的dB和dBm
今日光电 有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来----1. dB在光通信中,dB(分贝)是一个用于量化信号强度、功率增益或损耗的对数单位。如果光源发出的功率P1,经光纤线路传输后,在接收端的功率是P2,则光纤线路的损耗是P2/P1,用分贝(dB)表示为P1和P2的单位必须相
今日光电
2024-12-04
348浏览
【光电通信】为什么光纤通信两芯就够了,而网线却需要八芯
今日光电 有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来----来源:宽带维修排障申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。 ----与智者为伍 为创新赋能----【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们诚招运营合伙人 ,
今日光电
2024-12-02
37浏览
【光电通信】光纤通信发展概述
今日光电 有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来----近期在和很多客户做测试和讨论交流时,发现不少的客户虽然做光纤通信类的产品,但对很多基本的原理和概念了解不多,在涉及到基本理论和一些现象、标准制定背后的原因时只知其然不知其所以然。笔者在面对很多看起来很基础的问题时同样发现
今日光电
2024-10-15
423浏览
【光电通信】特种光纤与光纤通信-236页收藏
今日光电 有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来----来源:通信大讲堂申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。 ----与智者为伍 为创新赋能----【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们诚招运营合伙人 ,对
今日光电
2024-09-10
434浏览
【光电通信】光纤通信中的WDM技术究竟是什么?
今日光电 有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来----来源:通信百科申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。 ----与智者为伍 为创新赋能----【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们诚招运营合伙人 ,对新媒体
今日光电
2024-06-26
382浏览
【光电集成】电子科技大学两项重大突破:实现光纤通信波段光子的时-频模式复用存储,成功研制出氮化镓量子光源芯片
今日光电 有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来----“龙光学”—量子纠缠产生过程。龙象征氮化镓环,其中一条龙(左)吸收泵浦激光光子,另一条龙发射纠缠光子。 来源四川日报来源:量子风云申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。 -
今日光电
2024-04-24
558浏览
【光电通信】光纤通信中的遥泵放大器是怎样的光放大器?
今日光电 有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!----追光逐电 光赢未来----图:光纤损耗窗口图来源:通信百科申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。 ----与智者为伍 为创新赋能----【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们诚招运营
今日光电
2024-04-05
464浏览
长飞全球首推智能汽车光纤通信解决方案
当前,全球汽车产业正发生百年来最深刻的变革,汽车电动化与智能化技术在快速发展,其数量庞大的电子元器件和超大容量的电池,使得整车电磁屏蔽的设计越来越复杂,同时车内外摄像头、各式雷达、车载人工智能等应用的大量使用,车内数据通信速率将提升至10、25、50Gbps甚至更高。因此,传统汽车通信的载体——铜线,已经不能支撑车载高速通信的需求,而具有高带宽、低损耗,无串扰,不受电磁干扰,小体积,低重量等多种优
线束中国
2024-01-12
702浏览
长飞全球首推智能汽车光纤通信解决方案
发展背景当前,全球汽车产业正发生百年来最深刻的变革,汽车电动化与智能化技术在快速发展,其数量庞大的电子元器件和超大容量的电池,使得整车电磁屏蔽的设计越来越复杂,同时车内外摄像头、各式雷达、车载人工智能等应用的大量使用,车内数据通信速率将提升至10、25、50Gbps甚至更高。因此,传统汽车通信的载体——铜线,已经不能支撑车载高速通信的需求,而具有高带宽、低损耗,无串扰,不受电磁干扰,小体积,低重量
线束世界
2024-01-12
728浏览
【光电通信】光纤通信是怎么实现的?
今日光电 有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。欢迎来到今日光电!----与智者为伍 为创新赋能----来源:通信百科申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。 ----与智者为伍 为创新赋能----【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们诚招运营合伙人 ,对新媒体感兴趣,对光电产
今日光电
2023-09-02
565浏览
【光电通信】为光纤通信修路(1)!
今日光电 有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。欢迎来到今日光电!----与智者为伍 为创新赋能----来源:通信百科申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。 ----与智者为伍 为创新赋能----【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们诚招运营合伙人 ,对新媒体感兴趣,对光电产
今日光电
2023-08-31
537浏览
雷电引发的神秘中断:高速光纤通信之困与破解之法
━━━━当今社会,光纤通信凭借传输频带宽、抗干扰性强以及信号衰减小等诸多优势,已然成为通信网络的重要支柱。简而言之,光纤通信就是将已转换为电信号的信息调制到激光器发出的激光束上成为光信号,再发送到光导纤维并以光的全反射原理进行传输。在接收端,相干检测光纤通信系统可以利用本地激光器发出的本振光源与接收信号进行相干探测。与之前得到广泛应用的直接检测光纤通信系统相比,其在提取信号振幅信息的同时还能提取到
云脑智库
2022-10-04
1549浏览
光纤通信的OTDR光时域反射技术应用
光纤通信的发展对我国的经济建设起到重要的作用。光纤通讯具有无法比拟的优势:传输频宽带、损失消耗较少。光纤通信的建设起始于二十世纪九十年代,并且得到大规模的发展。光纤通信作为承载着很大信息量的传输网络,具有一定的风险和不稳定性,为了保证光纤通信的顺利运行和安全,需要开发一种能精确测量出光纤通信特性的工具或者是仪器。为适应光纤通信中对光纤诊断的要求,产生了以背向瑞利散射为测量信号的光时域反射计(Opt
传感器技术
2022-09-06
908浏览
光纤通信的OFDR光频域反射技术应用
光纤通信的发展对我国的经济建设起到重要的作用。光纤通讯具有无法比拟的优势:传输频宽带、损失消耗较少。光纤通信的建设起始于二十世纪九十年代,并且得到大规模的发展。光纤通信作为承载着很大信息量的传输网络,具有一定的风险和不稳定性,为了保证光纤通信的顺利运行和安全,需要开发一种能精确测量出光纤通信特性的工具或者是仪器。光频域反射能够准确的检测出光纤通信特性,光频域反射主要是分析光纤的散射光时间差、光程差
传感器技术
2022-06-29
1383浏览
战略研究丨光纤通信技术发展现状与展望
来源 | 中国工程院院刊智库 | 云脑智库(CloudBrain-TT)云圈 | 进“云脑智库微信群”,请加微信:15881101905,备注研究方向本文选自中国工程院院刊《中国工程科学》2020年第3期作者:谈仲纬,吕超来源:光纤通信技术发展现状与展望[J].中国工程科学,2020,22(3):100-107.编者按作为激光技术的重要应用,光纤通信技术是搭
云脑智库
2021-08-09
4145浏览
光纤通信的OTDR光时域反射技术应用
光纤通信的发展对我国的经济建设起到重要的作用。光纤通讯具有无法比拟的优势:传输频宽带、损失消耗较少。光纤通信的建设起始于二十世纪九十年代,并且得到大规模的发展。光纤通信作为承载着很大信息量的传输网络,具有一定的风险和不稳定性,为了保证光纤通信的顺利运行和安全,需要开发一种能精确测量出光纤通信特性的工具或者是仪器。为适应光纤通信中对光纤诊断的要求,产生了以背向瑞利散射为测量信号的光时域反射计(Opt
传感器技术
2021-06-14
1777浏览
光纤通信的OTDR光时域反射技术应用
光纤通信的发展对我国的经济建设起到重要的作用。光纤通讯具有无法比拟的优势:传输频宽带、损失消耗较少。光纤通信的建设起始于二十世纪九十年代,并且得到大规模的发展。光纤通信作为承载着很大信息量的传输网络,具有一定的风险和不稳定性,为了保证光纤通信的顺利运行和安全,需要开发一种能精确测量出光纤通信特性的工具或者是仪器。为适应光纤通信中对光纤诊断的要求,产生了以背向瑞利散射为测量信号的光时域反射计(Opt
传感器技术
2021-06-13
1360浏览
光纤通信的OFDR光频域反射技术应用
光纤通信的发展对我国的经济建设起到重要的作用。光纤通讯具有无法比拟的优势:传输频宽带、损失消耗较少。光纤通信的建设起始于二十世纪九十年代,并且得到大规模的发展。 光纤通信作为承载着很大信息量的传输网络,具有一定的风险和不稳定性,为了保证光纤通信的顺利运行和安全,需要开发一种能精确测量出光纤通信特性的工具或者是仪器。光频域反射能够准确的检测出光纤通信特性,光频域反射主要是分析光纤的散射光时间差
传感器技术
2021-04-30
1990浏览
光纤通信常用中英文对照大全
来源:网优雇佣军
ittbank
2020-11-06
1072浏览
光纤通信的OTDR光时域反射技术应用
传感器技术编辑整理光纤通信的发展对我国的经济建设起到重要的作用。光纤通讯具有无法比拟的优势:传输频宽带、损失消耗较少。光纤通信的建设起始于二十世纪九十年代,并且得到大规模的发展。光纤通信作为承载着很大信息量的传输网络,具有一定的风险和不稳定性,为了保证光纤通信的顺利运行和安全,需要开发一种能精确测量出光纤通信特性的工具或者是仪器。为适应光纤通信中对光纤诊断的要求,产生了以背向瑞利散射为测量信号的光
传感器技术
2019-05-10
1893浏览
正在努力加载更多...
广告
今日
新闻
1
强化嵌入式安全IP,EDA巨头Cadence收购Secure-IC
2
华为手机重回中国第一!
3
我国在量子精密测量领域取得重大突破:全球首套±800kV特高压直流量子电流传感器
4
英诺赛科反诉英飞凌,专利纠纷升级
5
面临亏损和股价暴跌困境,罗姆半导体换帅变革
6
1.6亿元!南芯科技拟现金收购昇生微100%股权
7
政策争议!汽车创新联盟起诉美国交通部,反对强制安装自动紧急制动系统
8
600.6亿元!AI产业也有了自己的国家级“大基金”
热门
文章排行
1
特斯拉上海超级工厂拟停产升级
一览众车
13916
2
AMEYA360|2025年春节放假通知!
皇华电子元器件IC供应商
9421
3
已确认!SGS和BV必维正在洽谈合并!
谈思汽车
3045
4
无语!特朗普欢迎TikTok回来:必须把公司50%卖给美国
芯通社
2261
5
小米15Ultra影像细节:支持10cm微距大光圈双长焦镜组镀膜换新
手机技术资讯
2151
6
赵明辞职!荣耀正式官宣“换帅”,前华为悍将李健接任
CINNOResearch
1468
7
一汽车品牌被曝订单造假!爆料人已删帖
谈思汽车
1256
8
更多细节曝光,小米汽车武汉第三工厂要来了?
谈思汽车
1037
9
CES2025汽车专题报告:智能汽车领域四大新趋势
智能汽车设计
983
10
特朗普正式取消电动汽车强制法令
电动知家
882
11
突发!美国黑名单再扩容,5家中国光伏企业遭禁入美市场!
DT半导体材料
840
12
2025年AI产业发展十大趋势
智能计算芯世界
824
13
深夜被“一锅端”!算能科技及子公司智谱及子公司被美国封杀
集成电路IC
744
14
2024中国智能手机出货量排名:vivo第一,小米未进前五
BOE知识酷
621
15
中国对美芯片调查,或指向TI德仪
芯极速
605
16
曝某汽车品牌订单造假,已到暴雷边缘!
电动知家
582
17
富士康及郭台铭被起诉!
芯极速
578
18
中国小伙撞脸世界首富?马斯克幽默回应:可能我有中国血统
美股研究社
567
19
最新!多家AIoT企业发布2024年业绩预告
物联传媒
559
20
突发!马斯克收购英特尔!
中国半导体论坛
554
21
英国皇家工程院院士、谢菲尔德大学诸自强教授中文版首发!《永磁同步电机无位置传感器控制》详解最新无位置传感器控制技术!
电动车千人会
520
22
英特尔,或将被全盘收购!
芯极速
510
23
TikTok恢复在美服务特朗普提出合资方案;华为2024年分红方案出炉;黄仁勋现身北京|日报
全球TMT
508
24
央视揭秘黄牛抢票细节,终于知道为啥抢不到票了
C语言与CPP编程
496
25
宇树机器人行走超马斯克擎天柱,被质疑是特效,英伟达科学家力挺
国纳科技匠
487
26
平衡!英伟达黄仁勋、台积电魏哲家将缺席特朗普总统就职典礼!
飙叔科技洞察
476
27
哈工大开创极紫外光刻的新方法
阿尔法工场研究院
469
28
雷军到访宁德时代曾毓群亲自接待
锂电联盟会长
467
29
聚焦AI、数据实践案例,十余位专家带来数智化前沿技术分享
爱分析ifenxi
461
30
黄仁勋现身深圳:我只是来和员工庆祝春节!
皇华电子元器件IC供应商
452
广告
最新
评论
更多>>
我也多次遇到这类绝对防水防潮的家用电器,没得修!多见于厨房、洗浴等环境。 出于安全这倒是个办法,可系统各环节可靠性寿命的一致性也是出于安全的必要啊!矛盾在于制造成本的投入和消费购买的接受。这是个看似有解,其实无解的问题。说白了,环保是个伪命题。
自做自受
评论文章
2025-01-21
拆解洗衣机控制板,我差点以为我能修好这台洗衣机按键不良问题
Labview串口
具备IVIV
评论文章
2025-01-21
手把手教你用Labview写一个串口上位机
资料
文库
帖子
博文
1
开关电源设计 反激控制思路的了解-4
2
ESP32TFT常用字体库.zip
3
自动增益控制放大器设计与实现
4
无线传能充电器设计与实现论文
5
基于单片机自动电阻测试仪设计论文
6
开关电源设计 反激控制思路的了解-2
7
sharp r69431 datasheet
8
智算中心建设导则
9
开关电源设计 反激控制思路的了解-3
10
Processing-processing3.5.4
1
桥式变换电路
2
求助 请推荐一款8脚的DCDC , 12V 变5V的, 2A 就行,不虚标。
3
【工程师故事】+2024年:资深嵌入式工程师在职读研的第一年,收获颇丰
4
〖思路〗 反偏PN结的 四种状态
5
altium Designer19使用问题20250115
6
助力新能源汽车电机控制SLM7888系列SLM7888CH低压三相半桥驱动器
7
车灯FCC辐射超标如何解决
8
请教:BJT类有源器件
1
2025年刚开始,就收到了“橄榄枝”!
2
PCB设计第058篇 如何打开IPC-2581格式的PCB加工文件
3
过孔的设计孔径是真的很重要,但高速先生也是真的不关心
4
聊聊RISC-V MCU技术
5
人形机器人疯狂进厂打工!银河通用、智元、乐聚机器人怕是都疯了
6
【工程师故事】+2024年总结之做技术不能想当然
7
电气系统中,如何选择一款最为适配的数字隔离芯片?
8
挑战6万月薪【三】Purple Pi OH开发板带你7天入门OpenHarmony!
1
eMMC走线难度不大!多注意这些
2
24V转12V~3V降压芯片和线性LDO选型
3
常见电容的种类有哪些?
4
为什么要使用恒流源电路?
5
MLCC的选型和失效分析
6
AT7456E芯片到底是干嘛用的?
7
模拟量设备为什么偏爱用4~20mA传输信号?
8
很多电容都有印字,咋贴片陶瓷电容却没有?
9
在PCB生产过程中,影响传输线阻抗的因素
10
详解Linux内核
在线研讨会
重塑机器人未来:揭秘创新芯片解决方案的颠覆力量
Allegro电流传感器替代采样电阻解决方案—实现更高效、更可靠的电流检测
如何在隔离的状态监控系统中捕获同步数据
多路有光·精准不凡——KSW-SGM01模拟信号源发布会
EE直播间
Fabless100系列技术和应用直播 —实时控制、BMS:国产MCU迈向高性能应用
直播时间:02月18日 10:00
高效协同与版本管理:Cliosoft助力现代芯片设计
直播时间:02月26日 10:00
第三代功率半导体器件测试解决方案
直播时间:03月06日 10:00
E聘热招职位
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
强化嵌入式安全IP,EDA巨头Cadence收购Secure-IC
华为手机重回中国第一!
我国在量子精密测量领域取得重大突破:全球首套±800kV特高压直流量子电流传感器
英诺赛科反诉英飞凌,专利纠纷升级
面临亏损和股价暴跌困境,罗姆半导体换帅变革