社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
IIC Shanghai 2023
2023(第四届)国际 AIoT 生态发展大会
全球 MCU 生态发展大会
第四届临港半导体产业高峰论坛暨司南科技奖颁奖盛典
IIC Shenzhen 2023
第四届中国国际汽车电子高峰论坛
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
登录|注册
芯语
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
首页
热门
专栏作家
电子产业热词
CEO专栏
技术文库
科技头条
专栏入驻
×
提示!
您尚未开通专栏,立即申请专栏入驻
芯语
帖子
博文
用户
芯语
登录
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
共模电感
EMC整改中共模电感的使用原理
点击👆一点电子👇关注我,右上角“...”设为 ★星标★,技术干货第一时间送达!区别于常见的电感有四个导线称之为共模电感。▎抑制共模噪声抑制共模噪声的方法多种多样,除了从源头去减少共模噪声外,通常我们抑制最常用的方法就是使用共模电感来滤除共模噪声,也就是将共模噪声阻挡在目标电路外面。即在线路中串联共模扼流器件。这样做的目的是增大共模回路的阻抗,使得共模电流被扼流器所消耗和阻挡(反射),从而抑制线路中
一点电子
2025-03-25
94浏览
一文详解处理EMC的三大武器-磁珠/共模电感/电容(附应用案例)
处理电磁兼容性(EMC)问题是确保电子设备在电磁环境中能够正常运行且不会对周围的其他设备造成干扰的重要任务,是硬件工程师的重要工作。在处理EMC问题时,常用的方法包括使用磁珠、电感和电容这三种组件。 1-磁珠(Ferrite Beads)抑制的原理和应用范围磁珠是一种电子组件,通常由铁氧体等材料制成,具有高导磁性。它们被用来抑制高频电路中的电磁干扰(EMI)
启芯硬件
2025-03-11
224浏览
上次电源入口加磁珠出事了!这次换个共模电感看看会发生什么?
▲ 点击上方蓝字关注我们,不错过任何一篇干货文章!一、 摘要磁珠用于直流输入端口的弊端上一篇文章已经讲述,(还没看过的朋友,可以点击👉电源入口加磁珠,出事了~),能够替代磁珠再数十M频率下提供良好的阻抗,莫过于共模电感(扼流圈),本文就针对扼流圈用于DC24V做一个探讨。二、 问题描述问题来源于错误将磁珠应用于电源端口,磁珠作为串联再电路中应用,流过较大电流的时候,其可靠性太差了,读者可以尝试用下
电子工程世界
2024-12-10
599浏览
豫之鑫车规级(AEC-Q200)共模电感YZXTGM7060F-701-2P介绍!
深圳市豫之鑫科技集团股份有限公司成立于2001年,坐落在全球科技创新之都一一中国深圳。2023年成立成都豫之鑫科学技术研究院,是集设计、研发、生产、销售为一体的现代化专业电感产品制造企业!豫之鑫专注车规电感领域,为客户提供AEC-Q200认证的高品质电感产品。豫之鑫拥有三个生产基地,遵循IATF16949质量管理体系,确保产品满足汽车行业的严苛要求。其产品广泛应用于汽车电子系统,此外,豫之鑫具备强
皇华电子元器件IC供应商
2024-06-19
555浏览
板级EMC设计举例(共模电感)
“ EMC整改举例。”EMC整改中共模电感的使用原理01—共模电感的构成共模电感是一个四端器件,由两组线圈绕在同一个磁芯上,匝数相同,绕线方向相反。从下面的示意图,也可以看出大概意思。02—共模电感的作用 共模电感能衰减滤除共模电流,双向抑制共模EMI干扰。当共模信号流经共模电感时,此时流经共模电感两个线圈的电流方向相同,电流在线圈中产生的磁通相互叠加,此时表现共模电感为大电
EMC标准
2024-03-01
1047浏览
如何理解共模电感?
点击上方名片关注了解更多一、共摸电感的作用、原理相信对于共模电感很多人都不陌生,但是对它的接法你是否完全理解呢?你的电路上的共模电感是否接对了?首先我们来认识一下共模电感。共模电感一个以铁氧体为磁芯的共模干扰抑制器件,它是由两个尺寸相同、匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,共模电感对交流电流起着阻碍的作用。对于插件电感,我们一般见的比较多的就是UU型和EE型以及环型
硬件笔记本
2023-12-29
899浏览
EMC整改中共模电感的使用原理
区别于常见的电感有四个导线称之为共模电感。▎抑制共模噪声抑制共模噪声的方法多种多样,除了从源头去减少共模噪声外,通常我们抑制最常用的方法就是使用共模电感来滤除共模噪声,也就是将共模噪声阻挡在目标电路外面。即在线路中串联共模扼流器件。这样做的目的是增大共模回路的阻抗,使得共模电流被扼流器所消耗和阻挡(反射),从而抑制线路中的共模噪声。▎共模扼流器或电感的原理若在以某种磁性材料的磁环上绕上同向的一对线
EMC标准
2023-07-02
967浏览
如何区分共模电感和差模电感
点击上方名片关注了解更多一、共模电感与差模电感共模电感和差模电感都是抗电磁干扰有效的元器件之一,广泛应用于各种滤波器、开关电源等产品,但是共模电感是用来抑制共模干扰,而差模电感是用来抑制差模干扰,两种都是比较重要的滤波电感。二、共模电感和差模电感识别虽然两种电感都是滤波电感,但是作用不一样也就决定了外观以及绕线方式会有所不一样,对于共模电感,它是绕在同一铁心上,并且两个绕组的线圈直径和圈数一样,但
硬件笔记本
2023-05-10
998浏览
CAN总线到底要不要加共模电感?
关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯来源:ZLG致远电子 ,研发部在CAN节点的设计中,我们通常为了总线的通讯更为可靠,为CAN接口增加各种器件,但实际并非所有应用都需要,过多防护不仅增加成本,而且器件的寄生参数必然影响信号质量。本文将简单介绍共模电感用于总线的作用。我们在实际应用中看到许多CAN产品会使用共模电感,但在常规测试中却看不到它对
智能汽车电子与软件
2023-05-08
1919浏览
一文搞懂共模电感
点击上方名片关注了解更多差模电流:在一对差分信号线上,大小相同,方向相反的一对信号,一般是电路中的工作电流,对于信号线就是信号线与信号地线之间流动的电流。共模电流:在一对差分信号线上,大小相同,方向相同的一对信号(或噪音)。在电路中,一般对地噪音一般都是以共模电流的方式传输的,所以又称为共模噪声。抑制共模噪声的方法多种多样,除了从源头去减少共模噪声外,通常我们抑制最常用的方法就是使用共模电感来滤除
硬件笔记本
2023-04-13
1222浏览
共模电感和差模电感如何识别,其实很简单
一、共模电感与差模电感共模电感和差模电感都是抗电磁干扰有效的元器件之一,广泛应用于各种滤波器、开关电源等产品,但是共模电感是用来抑制共模干扰,而差模电感是用来抑制差模干扰,两种都是比较重要的滤波电感。二、共模电感和差模电感识别虽然两种电感都是滤波电感,但是作用不一样也就决定了外观以及绕线方式会有所不一样,对于共模电感,它是绕在同一铁心上,并且两个绕组的线圈直径和圈数一样,但是绕向方向相反,一组线圈
电源研发精英圈
2023-04-12
1030浏览
干货|CAN总线到底要不要加共模电感?
在CAN节点的设计中,我们通常为了总线的通讯更为可靠,为CAN接口增加各种器件,但实际并非所有应用都需要,过多防护不仅增加成本,而且器件的寄生参数必然影响信号质量。本文将简单介绍共模电感用于总线的作用。我们在实际应用中看到许多CAN产品会使用共模电感,但在常规测试中却看不到它对哪一项指标有明显改善,反而影响波形质量。许多工程师为了以防万一,确保可靠,会对CAN增加全面外围电路。CAN芯片已经有很好
电子工程世界
2022-09-30
1627浏览
EMC整改中,共模电感的使用原理
点击上方名片关注了解更多区别于常见的电感有四个导线称之为共模电感。▎抑制共模噪声抑制共模噪声的方法多种多样,除了从源头去减少共模噪声外,通常我们抑制最常用的方法就是使用共模电感来滤除共模噪声,也就是将共模噪声阻挡在目标电路外面。即在线路中串联共模扼流器件。这样做的目的是增大共模回路的阻抗,使得共模电流被扼流器所消耗和阻挡(反射),从而抑制线路中的共模噪声。▎共模扼流器或电感的原理若在以某种磁性材料
硬件笔记本
2022-09-15
1548浏览
答题|共模电感的仿真应用来了,满满的干货送给大家!
上期话题共模电感的仿真应用来了,满满的干货送给大家!(戳标题,即可查看上期文章回顾)Q大家各自的产品中,都用上了共模电感了吗,聊聊你们的经历和心得?感谢各位网友的回答,以下是高速先生的一些观点:1,对于有外部接口的产品,共模电感的主要作用就是抑制外部引入的共模噪声,保证差模信号的顺利传输,这个原理肯定是没有问题的,因此被广泛应用在像USB,PCIE,HDMI等通讯类的接口;2,为什么我们很少会在更
高速先生
2022-07-29
2390浏览
共模电感的仿真应用来了,满满的干货送给大家!
公众号:高速先生作者:黄刚首先一上来先明确下本篇文章需要解决的疑问,主要有2个。一是共模电感本身到底起到怎么样的作用?二是加上共模电感之后的测试眼图为什么反而比不上不加共模电感?这两个问题都会通过本篇文章的仿真验证来告诉大家!首先我们先解决第一个问题,共模电感到底起的是什么作用。我们先看看上周文章中关于共模电感的datasheet,从图上可以看到,共模电感呈现的共模阻抗是很大的,也就是说如果是共模
高速先生
2022-07-25
1710浏览
共模电感听过很多次,但是什么原理你们真的懂吗?
公众号:高速先生作者:黄刚共模电感,我们更多的会在通讯类的产品中看到,普遍存在于接口的应用中,例如USB,PCIE,HDMI等接口。从它的名字大家肯定知道,它的作用是与共模阻抗是有关系的。它的外形大概是长下面这样,把一对差分线进行串接起来使用。对,就是这么简单,由于它的使用简单和体积不大,对于PCB设计来说不会增加什么难度,因此在很多接口的原理图上都少不了它的身影。用是很多人都会用啦,但是并不代表
高速先生
2022-07-18
1343浏览
电感四条腿?别奇怪,那是共模电感!
我们常见的电感是两个腿的,叫做差模电感。今天和大家介绍四个腿的共模电感。▎差模电流与共模电流差模电流:在一对差分信号线上,大小相同,方向相反的一对信号,一般是电路中的工作电流,对于信号线就是信号线与信号地线之间流动的电流。共模电流:在一对差分信号线上,大小相同,方向相同的一对信号(或噪音)。在电路中,一般对地噪音一般都是以共模电流的方式传输的,所以又称为共模噪声。▎抑制共模噪声抑制共模噪声的方法多
电子芯期天
2022-05-06
1441浏览
知识分享:开关电源共模电感计算
电感器作为磁性元件的重要组成部分,被广泛应用于电力电子线路中。尤其在电源电路中更是不可或缺的部分。如工业控制设备中的电磁继电器,电力系统之电功计量表(电度表)。开关电源设备输入和输出端的滤波器,电视接收与发射端之调谐器等等均离不开电感器。电感器在电子线路中主要的作用有:储能、滤波、扼流、谐振等。在电源电路中,由于电路处理的均是大电流或高电压的能量传递,故电感器多为“功率型”电感。正是因为功率电感不
电子芯期天
2022-03-09
1676浏览
开关电源共模电感计算其实并不难!
【干货免费领】540M开关电源案例及学习资料完整版:点我ADI资料合集 | 99%硬件工程师都是用的资料:点我70G硬件设计资料汇总免费送:点我概述电感器作为磁性元件的重要组成部分,被广泛应用于电力电子线路中。尤其在电源电路中更是不可或缺的部分。如工业控制设备中的电磁继电器,电力系统之电功计量表(电度表)。开关电源设备输入和输出端的滤波器,电视接收与发射端之调谐器等等均离不开电感器。电感器在电子线
电子芯期天
2022-01-07
7353浏览
差模电感与共模电感
概述电感器变压器典型应用电路——开关电源电路EMI滤波典型电路差模噪声、共模噪声及差模电感器、共模电感器共模电感器设计开关电源产生的共模噪声频率范围从10kHz~50MHz甚至更高,为了对这些噪声有效的衰减,那么在这个频率范围内,共模电感器就必须提供足够高的阻抗。因此高磁导率的锰锌铁氧体和非晶材料是非常适合的。共模电感器的阻抗Zs由串联感抗Xs和串联电阻Rs两部分组成,Zs、Xs、Rs三者随频率变
电源Fan
2021-10-22
1809浏览
(干货分享)差模电感与共模电感
(长按上方二维码,即可加入会员)概述电感器变压器典型应用电路——开关电源电路EMI滤波典型电路差模噪声、共模噪声及差模电感器、共模电感器共模电感器设计开关电源产生的共模噪声频率范围从10kHz~50MHz甚至更高,为了对这些噪声有效的衰减,那么在这个频率范围内,共模电感器就必须提供足够高的阻抗。因此高磁导率的锰锌铁氧体和非晶材料是非常适合的。共模电感器的阻抗Zs由串联感抗Xs和串联电阻Rs两部分组
电源研发精英圈
2021-10-10
3964浏览
电感四个腿?不要惊奇,那是共模电感
▎差模电流与共模电流差模电流:在一对差分信号线上,大小相同,方向相反的一对信号,一般是电路中的工作电流,对于信号线就是信号线与信号地线之间流动的电流。共模电流:在一对差分信号线上,大小相同,方向相同的一对信号(或噪音)。在电路中,一般对地噪音一般都是以共模电流的方式传输的,所以又称为共模噪声。▎抑制共模噪声抑制共模噪声的方法多种多样,除了从源头去减少共模噪声外,通常我们抑制最常用的方法就是使用共模
传感器技术
2021-10-07
1144浏览
电感四个腿?不要惊奇,那是共模电感
我们常见的电感是两个腿的,叫做差模电感。今天和大家介绍四个腿的共模电感。▎差模电流与共模电流差模电流:在一对差分信号线上,大小相同,方向相反的一对信号,一般是电路中的工作电流,对于信号线就是信号线与信号地线之间流动的电流。共模电流:在一对差分信号线上,大小相同,方向相同的一对信号(或噪音)。在电路中,一般对地噪音一般都是以共模电流的方式传输的,所以又称为共模噪声。▎抑制共模噪声抑制共模噪声的方法多
嵌入式ARM
2021-09-30
5097浏览
图文并茂详解共模电感
差模电流:在一对差分信号线上,大小相同,方向相反的一对信号,一般是电路中的工作电流,对于信号线就是信号线与信号地线之间流动的电流。共模电流:在一对差分信号线上,大小相同,方向相同的一对信号(或噪音)。在电路中,一般对地噪音一般都是以共模电流的方式传输的,所以又称为共模噪声。抑制共模噪声的方法多种多样,除了从源头去减少共模噪声外,通常我们抑制最常用的方法就是使用共模电感来滤除共模噪声,也就是将共模噪
ittbank
2021-09-24
1272浏览
图文并茂详解共模电感
差模电流:在一对差分信号线上,大小相同,方向相反的一对信号,一般是电路中的工作电流,对于信号线就是信号线与信号地线之间流动的电流。共模电流:在一对差分信号线上,大小相同,方向相同的一对信号(或噪音)。在电路中,一般对地噪音一般都是以共模电流的方式传输的,所以又称为共模噪声。抑制共模噪声的方法多种多样,除了从源头去减少共模噪声外,通常我们抑制最常用的方法就是使用共模电感来滤除共模噪声,也就是将共模噪
电源Fan
2021-09-24
2873浏览
正在努力加载更多...
广告
今日
新闻
1
蒋尚义评英特尔从“王者”到“Nobody”,与成熟工艺代工企业合并是“绝配”
2
RIGOL高速伺服激光加工系统MIPI D-PHY一致性测试
3
电力电子科学笔记:利用回旋共振测量电子和空穴的有效质量
4
全球AI算力的增长,正掀起太阳能光伏“新基建”热潮
5
小企业+低成本模式:欧洲边缘AI能否弯道超车中美?
6
三星电子首次设立“首席设计官”,聘请Mauro Porcini担任
7
转型Fab-Lite后,格科高像素CIS进入新阶段
8
美国对所有进口汽车加征25%关税,全球汽车产业链震动
热门
文章排行
1
深圳的“北方华创”!新凯来发布5大核心设备
芯极速
8002
2
新凯来引爆展会,到底什么来头
芯片工艺技术
4730
3
能生产3nm!中国成功研发全新DUV光刻:完全不同于ASML
硬件世界
3321
4
产能大爆发!国产大飞机C919今年冲刺75架,2029年将达200架!
飙叔科技洞察
2116
5
新凯来发布6大类31款半导体设备(附产品资料)
芯通社
1759
6
英伟达芯片或遭中国限制!股价暴跌!
半导体前沿
1160
7
56岁竟然逆生长,“劳模”雷军为何越来越年轻了
快科技
1040
8
6家SiC企业实现12吋突破!
第三代半导体风向
1020
9
近30家SiC/GaN企业集结上海,2025最新技术集中亮相
第三代半导体风向
893
10
黄金时代即将结束,英伟达股价即将迎来大幅下跌
美股研究社
839
11
李想官宣:理想汽车自研汽车操作系统「理想星环OS」开源
谈思实验室
792
12
可控核聚变重大突破!能源革命的终极答案即将来临?
电动车公社
789
13
市场竞争刚拉开帷幕,2025年AI眼镜市场第一季度新品大揭秘
JMInsights集摩咨询
784
14
东旭集团财务造假:被罚17亿元,19人禁入证券市场!
WitDisplay
777
15
2家SiC企业实现主驱突破,今年MOS国产化率将达20%?
第三代半导体风向
759
16
走进SEMICONChina:半导体产业8大看点和“黑科技”揭秘
DT半导体材料
741
17
林本坚:中国大陆或催生半导体界的“DeepSeek”
芯极速
739
18
三大半导体备战产业化,金刚石才是“性能天花板”!
DT半导体材料
699
19
中科院全固态DUV光源技术突破!
芯极速
683
20
三星李在镕到访比亚迪!
半导体前沿
678
21
5亿元!方正电机上海电驱工厂即将开工
行家说汽车半导体
671
22
国家发改委:批评某些车企
一览众车
667
23
《Kimi高效办公》《豆包高效办公》《智能体设计指南》新书发布会成功举办
IT阅读排行榜
644
24
疑已通过审批!特斯拉FSD更名后悄然推送
谈思汽车
644
25
DeepSeek塞进小盒子?ESP32微型AI伴侣开发指南!
嵌入式大杂烩
633
26
RTX5060Ti上演超级跳票!NVIDIA保证可以原价买到
硬件世界
581
27
三星会长李在镕探访小米汽车工厂!
皇华电子元器件IC供应商
564
28
广州低空经济发展带火无人机考证 越来越多年轻人涌入“新赛道”
爱上半导体
512
29
三星李在镕,亲访小米争取订单
芯极速
511
30
科创丨北京国资坐镇,屹唐半导体即将IPO
AI芯天下
500
广告
最新
评论
更多>>
AES11
用户17433...
评论文章
2025-03-31
欧阳明高最新百人会报告PPT(附下载):《电动乘用车发展的新阶段、新挑战与新路径》
AES11
用户17433...
评论文章
2025-03-31
欧阳明高最新百人会报告PPT(附下载):《电动乘用车发展的新阶段、新挑战与新路径》
资料
文库
帖子
博文
1
软件工程导论 (第6版) 张海藩.pdf
2
现代实用传感器电路-图书
3
传感器与信号处理-图书
4
IPC J-STD-001J-CN:中文 2024 焊接的电气和电子组件要求.pdf
5
高精度气压计与海拔传感器HP203N的技术规格及应用
6
IGBT并联使用要点(来源于onsemi)
7
[完结10章]DeepSeek+SpringAI实战AI家庭医生应用
8
多传感器信息融合及应用
9
现代传感器集成电路:通用传感器电路
10
硅微机械传感器
1
如何去标定光敏电阻使得每一个的灵敏度一样
2
这个CAN通讯电路最高能支持的速率是多少?通讯的原理谁...
3
宝砾微DCDC降压、DCDC升压、DCDC升降压、数模混合SOC 电源芯片
4
【2025第1期拆解活动】拆解——洞见电子产品设计智慧!
5
中微半导体发布首款集成RISC-V内核的32位微控制器-ANT32RV56xx
6
【元能芯24V全集成电机专用开发板】+GPIO测试+PWM输出测试
7
LC6710A 代替OB3635AMP
8
LTspice参数扫描为什么只有一种情形的波形?
1
WT588F语音芯片响应时间深度解析:从指令触发到音频播放的技术全貌
2
无线门铃语音芯片IC解决方案:WTN6040F与WT588F02B深度解析
3
【拆解】+Shinco音响拆解
4
多核异构架构的算力协同:为旌R5F+A55内核如何解决Linux-RT实时性难题?
5
真空容器的材料有哪些
6
真空容器是恒压的吗
7
真空容器是否存在压强
8
特斯拉入华十年:褪去光环,开始 “交学费”
1
三电平双向全桥多谐振DC-DC变换器研究
2
DCDC简易电路原理
3
关于buck电路的Layout设计注意事项
4
滤波器电路图及其截止频率计算公式
5
肖特基&TVS&稳压二极管的区别
6
什么是整流变压器
7
ADAS、NOA、NOP、NGP、全场景智驾有什么区别?
8
TVS的规格书举例
9
VCU、ECU、MCU电池BMS图解
10
何为显性?何为隐性,和逻辑1和逻辑0到底是什么关系?
在线研讨会
MAXQ™ Power转换器架构:性能零浪费
多物理场仿真在半导体制程中的应用
迈来芯新一代经济型热成像技术:赋能电力电子过热保护与智能应用温度监控
ADI 应用于电池管理系统 (BMS) 的电芯监测解决方案
EE直播间
精准捕获瞬态信号,掌控复杂射频环境 – 实时频谱分析与录制回放
直播时间:04月10日 10:00
利用高性能源表和强大的软件, 实现半导体参数的测试和分析
直播时间:04月17日 10:00
E聘热招职位
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
蒋尚义评英特尔从“王者”到“Nobody”,与成熟工艺代工企业合并是“绝配”
RIGOL高速伺服激光加工系统MIPI D-PHY一致性测试
电力电子科学笔记:利用回旋共振测量电子和空穴的有效质量
全球AI算力的增长,正掀起太阳能光伏“新基建”热潮
小企业+低成本模式:欧洲边缘AI能否弯道超车中美?