社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
IIC Shanghai 2023
2023(第四届)国际 AIoT 生态发展大会
全球 MCU 生态发展大会
第四届临港半导体产业高峰论坛暨司南科技奖颁奖盛典
IIC Shenzhen 2023
第四届中国国际汽车电子高峰论坛
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
帖子
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
×
提示!
您尚未开通专栏,立即申请专栏入驻
帖子
博文
用户
芯语
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
非对称
【新品介绍】首款新型TPSMB非对称TVS二极管为汽车SiCMOSFET提供卓越的栅极驱动器保护
专为下一代电动汽车基础设施而设计,为高能效车载充电和逆变器提供结构紧凑的单元件解决方案Littelfuse宣布推出TPSMB非对称TVS二极管系列,这是首款上市的非对称瞬态电压抑制(TVS)二极管,专门用于保护汽车应用中的碳化硅(SiC)MOSFET栅极驱动器。 这一创新产品满足下一代电动汽车(EV)系统对可靠过压保护日益增长的需求,提供一种结构紧凑的单元件解决方案,取代了传统用于栅极驱动器保护的
力特奥维斯Littelfuse
2024-12-30
258浏览
【新品介绍】业界首款用于SiCMOSFET栅极保护的非对称瞬态抑制二极管系列
数据中心、电动汽车基础设施和工业设备中高效电源解决方案的理想选择Littelfuse宣布推出SMFA非对称系列表面贴装瞬态抑制二极管,这是市场上首款非对称瞬态抑制解决方案,专为保护碳化硅(SiC)MOSFET栅极免受过压事件影响而设计。与传统的硅MOSFET和IGBT相比,SiC MOSFET的开关速度更快、效率更高,因此越来越受到欢迎,对稳健栅极保护的需求也越来越大。SMFA非对称系列提供了一种
力特奥维斯Littelfuse
2024-10-22
407浏览
王春生再发NatureEnergy:非对称电解质实现高能锂离子电池!
点击左上角“锂电联盟会长”,即可关注!第一作者:Ai-Min Li通讯作者:ChunshengWang通讯单位:美国马里兰大学帕克分校DOI:https://doi.org/10.1038/s41560-024-01619-2研究背景微米级合金化负极在锂离子电池中比石墨具有更低的成本和更高的容量。然而,它们在碳酸盐电解质中遭受快速容量衰减和低库仑效率的困扰,因为有机固体电解质界面(SEI)与合金强
锂电联盟会长
2024-08-23
671浏览
汽车MCU基于非对称算法的伪安全启动方案
点击上方蓝字谈思实验室获取更多汽车网络安全资讯01概述随着软件定义汽车理念的普及,汽车上代码量不断膨胀,功能不断智能化,用户体验不断升级。从传统汽车不需要联网,到职能汽车具有联网功能已是标配,汽车触网必将带来更多信息安全问题。汽车的信息安全问题比IT领域更加重要,因为可能危及生命安全。故国家也出台强标《汽车整车信息安全技术要求》(目前还处于征求意见稿),在强标的的9.1.1条提出“车载软件升级系统
谈思实验室
2024-06-22
576浏览
上海电力大学《ACSANM》:封装在石墨烯中ZnSe–SnSe2微立方体,用于高性能非对称超级电容器
点击左上角“锂电联盟会长”,即可关注!1成果简介 高容量 SnSe2 阴极材料结合了转化反应和合金化反应的优点,在超级电容器中具有广阔的应用前景。然而,它们的循环性能较差,电子电导率较低。为了有效改善它们的电化学性能,本文,上海电力大学徐燕、朱燕艳教授团队在《ACS Appl. Nano Mater》期刊发表名为“Microcubes of ZnSe–SnSe2 Encapsulated with
锂电联盟会长
2024-05-25
659浏览
超宽带非对称多节定向耦合器设计
今天带来一篇超宽带非对称多节定向耦合器设计清晰原文请发信息至公众号平台索取下载方法:1. 关注本公众号(已关注本号者跳过此步)2. 点击右上角分享此篇文章至朋友圈3. 进入公众号发信息1031下载链接☆ END ☆精彩回顾腔体滤波器技术提升解决方案腔体滤波器设计之----自动单腔频率温飘秒仿糖葫芦串形低通秒仿糖葫芦型低通后续之----低通优化TE01模介质滤波器滤波器无源互调浅析如何选择谐振杆的尺
5G通信射频有源无源
2024-05-09
592浏览
“国产双系统”出炉啦!RK3568J非对称AMP:Linux+RTOS/裸机
“非对称AMP”双系统是什么AMP(Asymmetric Multi-Processing),即非对称多处理架构。“非对称AMP”双系统是指多个核心相对独立运行不同的操作系统或裸机应用程序,如Linux + RTOS/裸机,但需一个主核心来控制整个系统以及其它从核心。每个处理器核心相互隔离,拥有属于自己的内存,既可各自独立运行不同的任务又可多个核心之间进行核间通信。随着对嵌入式系统要求的不断提高,
一口Linux
2023-12-15
995浏览
国产双系统”分享,RK3568J非对称AMP:Linux+RTOS/裸机
在实际项目开发中,越来越的场合,需要集成多个ARM核,并且在这个架构上运行多个操作系统。这就是一种有趣的技术:非对称多处理架构,也称为非对称AMP双系统。这种架构可以在一个系统中同时运行两个操作系统,它对于提高系统效率和性能以及增强安全性具有重要意义。同时,我们还将通过开发案例和源码来了解如何实现这种技术。如果你对这个话题感兴趣,欢迎一起探讨!何为“非对称AMP”双系统?非对称多处理架构(AMP)
一口Linux
2023-10-25
1328浏览
基于非对称几何MoS2二极管的超灵敏、快速细胞因子传感器
据麦姆斯咨询报道,近日,西蒙弗雷泽大学(SimonFraserUniversity,简称SFU)的研究人员开发了一款基于非对称几何MoS2(二硫化钼)二极管的生物传感器,用于无标记、快速且高灵敏的特异性检测肿瘤坏死因子-α(TNF-α,一种促炎细胞因子)。该传感器由肿瘤坏死因子-α结合寡核苷酸适配子功能化,以检测浓度低至10 fMol(飞摩尔)的肿瘤坏死因子-α,该浓度水平远低于健康血液中的典型浓
MEMS
2022-12-26
1249浏览
[仿真-实物-测试]790至960MHz宽带600WLDMOS非对称Doherty放大器
电子万花筒平台核心服务 中国最活跃的射频微波天线雷达微信技术群电子猎头:帮助电子工程师实现人生价值! 电子元器件:价格比您现有供应商最少降低10%射频微波天线新产品新技术发布平台:让更多优秀的国产射频微波产品得到最好的宣传!发布产品欢迎联系管理,专刊发布!强力曝光!欢迎射频微波雷达通信工程师关注公众号中国最纯粹的射频微波雷达通信工程师微信技术群,欢迎您的加入,来这里一起交流和讨论技术吧!进群记得备
电子万花筒
2022-07-02
928浏览
LinuxKernel中非对称密码算法的实现
Ftrace公开课火热报名中:Ftrace公开课:站在设计者的角度来理解ftrace(限50人)。课程第一期报名已截止且已开课,第二期报名请咨询客服(小月微信:linuxer2016)。作者简介:baron (csdn:代码改变世界ctw),九年手机安全/SOC底层安全开发经验。擅长trustzone/tee安全产品的设计和开发。在默认情况下,本文讲述的都是ARMV8-aarch64架构,linu
Linux阅码场
2022-05-26
1269浏览
对高带宽连接的需求日益增长——对称带宽和非对称带宽
在之前的文章中,我们花了很多的篇幅来探讨全球汽车产业往集中式电子电气架构的发展。目前来看,2023年左右,从域控制器架构为主体的设计会在旗舰车型上过渡到跨域融合的集中式架构,而在2025年左右,会逐步进入完整的计算平台的状态。下一代架构主要特征是:具有区域控制器配合计算中心的架构。为了实现这一目标,汽车行业必须升级汽车的两种主要连接类型:● 传感器到ECU连接-单向带宽很大,反向带宽较小(非对称)
汽车电子设计
2022-04-21
1028浏览
具有非对称手性的三维弯曲超表面
手性材料普遍存在于自然界中,如多种氨基酸及蛋白质等,具有材料构型不能与其镜像对映体重合的特性。该特性使得手性材料能够产生圆二色性(CD)、旋光性等手性光响应,其中CD特指材料对右旋偏振光(RCP)与左旋偏振光(LCP)透射率不同,而RCP与LCP透射率的差值则被称为CD值,获得巨大的CD值在手性分子结构分析与光偏振调制器件中具有重要的应用潜力。然而,天然物质的手性材料与光相互作用较弱,限制了其手性
MEMS
2021-06-29
1300浏览
非对称IGBT阻断特性仿真
《Fundamentals of Power Semiconductor Devices》baliga: 非对称IGBT半单胞宽度为15µm(面积=1.5E-7cm−2),多晶硅栅电极窗口为7µm。均匀掺杂P衬底掺杂浓度为1E19cm−3,外延N基区掺杂浓度为5E13cm−3、厚度为100µm。N缓冲层为10µm。通过改变N-缓冲层的掺杂浓度来分析其对正向阻断能力和泄
半导体技术人
2021-02-05
1212浏览
非对称IGBT泄漏电流分析
《Fundamentals of Power Semiconductor Devices》baliga: 反向阻断结中的泄漏电流是由耗尽区域内的空间电荷产生电流形成的。在正向阻断模式下的非对称IGBT结构中,反向偏置深P/N基结J2的空间电荷产生电流因内部P-N-P晶体管的增益而放大: 给出了空间电荷产生电流密度为: 在轻掺杂基区空间电荷区宽度到达基区与缓
半导体技术人
2021-02-03
1973浏览
非对称IGBT结构反向阻断能力分析
《Fundamentals of Power Semiconductor Devices》baliga: 当对IGBT结构的集电极端施加负偏压时,P集电极/N基结(J1)变得反向偏置,而深P区和N基区之间的结(J2)正向偏置。反向阻断电压由P集电极/N-缓冲层结(J1)决定,耗尽层主要延伸在N-缓冲层内。最大电场出现在P集电极/缓冲层结(J1)
半导体技术人
2021-02-02
1532浏览
非对称IGBT结构正向阻断能力分析
《Fundamentals of Power Semiconductor Devices》baliga: 当对非对称IGBT结构的集电极施加正偏置时,深P区/N基结(J2)变为反向偏置,而P集电区与N基区之间的结(J1)变为正向偏置。 正向阻断电压取决于深P区/N基结(J2),耗尽层主要在N基区内扩展。峰值电场出现在P区/N基结(J2)。如果与耗尽层宽度相比
半导体技术人
2021-02-01
1524浏览
意法半导体MasterGaN®系列新增优化的非对称拓扑产品
点击“意法半导体PDSA",关注我们! 中国,2021年1月18日——基于MasterGaN®平台的创新优势,意法半导体推出了MasterGaN2,作为新系列双非对称氮化镓(GaN)晶体管的首款产品,是一个适用于软开关有源钳位反
意法半导体PDSA
2021-01-19
1193浏览
非对称晶闸管工艺流程
该产品主要具有正向阻断电压高、高温漏电流小、饱和压降低、开通门限电压高、阳极脉冲峰值电流大、断态阳极电压上升率(dv/dt)高、开通阳极电流上升率(di/dt)高、抗辐射能力强等特点。 设计结构参数小结: 器件采用N+/P/N-/N+/P+非对称型结构。单元器件横向尺寸为420μm,器件厚度为910μm。器件内等效NPN晶体管发射区宽度为
半导体技术人
2020-12-28
1025浏览
正在努力加载更多...
广告
今日
新闻
1
只要一个I/O引脚,在几毫秒内测量从微伏到千伏电压
2
首款原生鸿蒙正式版手机要来了!DeepSeek加持
3
美议员推动全面禁止中国公民获得美国留学签证
4
国产GPU独角兽壁仞科技再获融资,上海国资领投
5
日产汽车重大人事重组,CEO内田诚卸任
6
从技术、应用和价格走势分析2025年的存储产业
7
台积电提议与英伟达、AMD、博世合资运营英特尔芯片代工,愿望或落空
8
蔚来被曝多部门裁员,裁减约10%,20分钟完成
热门
文章排行
1
23个提案建议!2025年全国两会代表委员聚焦“科技成果转化”,最新最全梳理→
BOE知识酷
4402
2
最高补贴2万!今年汽车以旧换新政策来了
智能车参考
3872
3
传小米汽车武汉工厂5月开工!年产能30万
谈思汽车
2237
4
全球首例!中国量子纠缠涡旋光芯片问世,破解光子维度革命终极难题!
飙叔科技洞察
2208
5
三元锂电池,悄然间沦为时代的“弃子”?
电动车公社
1918
6
华为海思新发ADC:24bit2MSAR构架ADC
云深之无迹
1557
7
突发!ADI取消文晔代理!
芯片视界
1523
8
全球首颗!杭州半导体厂商发布第四代半导体氧化镓8英寸单晶!
飙叔科技洞察
1106
9
中国联通连放大招!eSIM要回归了吗?
物联传媒
1105
10
拦不住!曝华为一年拿到200万颗昇腾910
文Q聊硬件
1067
11
深入探究:英伟达GB300GPU芯片液冷技术
智能计算芯世界
1042
12
仅仅2小时:摩尔线程GPU火速支持阿里杀手级AI大模型
文Q聊硬件
1030
13
就在明天!华为新形态手机来了,全国人民都买得起
快科技
988
14
三星开始量产第四代4纳米芯片!
皇华电子元器件IC供应商
967
15
雷军:成功来得猝不及防
一览众车
961
16
马斯克商业帝国要塌?他才是导致特斯拉暴跌、星舰爆炸的真正原因
国纳科技匠
961
17
中国科学家研制出全球首款碳基AI芯片!
皇华电子元器件IC供应商
933
18
慧与科技裁员5%,约2500名员工!
皇华电子元器件IC供应商
884
19
睿创微纳研发“红外热成像+可见光”双光谱AI追踪系统,让目标无所遁形
MEMS
854
20
曝:蔚来闪电裁员,20分钟走人,部分团队砍半!
智能汽车电子与软件
815
21
突发!年薪800万!女总裁辞职!
中国半导体论坛
803
22
刚刚,DeepSeek登顶全球AI排行榜第二!中国AI多点开花,已全面崛起?
国纳科技匠
772
23
取代C++,中国又一新兴岗位在崛起!这才是程序员未来5年最好的就业方向!
C语言与CPP编程
758
24
掌握核心技术!净利大涨145%,人形机器人“视觉中枢”,国产“隐形冠军”!
飙叔科技洞察
749
25
三诺生物发布动态血糖仪二代,以创新科技重塑糖尿病管理体验
MEMS
746
26
万字干货!MOS管超全总结,太实用了!
电力电子技术与新能源
673
27
特斯拉官宣,停产ModelS、ModelX
谈思汽车
660
28
【汽车校友百校联盟】同比下滑24.66%!日产中国最新销量公布
智享新汽车
639
29
全球第一款通用AI智能体!中国团队发布Manus震撼世界:人类休息时自主完成所有任务
快科技
637
30
比亚迪、长安自研SiC新进展:1200V沟槽、流片下线
第三代半导体风向
598
广告
最新
评论
更多>>
功率MOSFET管关断,绕组NP不工作,绕组NP去磁?这应该是Ns去磁吧
人间无事人
评论文章
2025-03-11
Flyback反激变换器:基本结构及CCM工作原理
请问在LTspice中,怎么仿真电源和器件整个的噪声,就举例来说,一个未经稳压的电源,经过电阻和稳压管稳压后得到的一路稳压电源;和另一路用低通滤波器得到的稳压电源,两者如何比较? 主要的问题是未经稳压滤波的电源信号怎么找?实际的稳压管怎么得到其参数看他的噪声,最后得到不同的稳压结果?
乱世煮酒...
评论文章
2025-03-10
LTspice如何进行噪声分析
资料
文库
帖子
博文
1
112页!DeepSeek 7大场景+50大案例+全套提示词 从入门到精通干货
2
[40周全]物联网/嵌入式全能工程师(提薪优选)
3
软件工程知识体系(SWEBOK)v4.0
4
软件工程导论 (第6版) 张海藩.pdf
5
数值分析(李庆扬、王能超、易大义)(超清晰版)
6
25年DeepSeek本地部署视频教程和全套安装包
7
RAG全栈技术从基础到精通 ,打造高精准AI应用
8
MOS并联
9
RC拉普拉斯逆变换计算C上的充电曲线
10
[11章]SpringBoot 3.x + Netty + MQTT 实战物联网智能充电桩
1
AI要抵制吗?
2
关于内容审核不通过的原因说明
3
《极简图解电磁学基本原理》轻松入门
4
【元能芯24V全集成电机专用开发板】+2极对电机运行测评
5
建议积分可兑换机器人可编程玩具
6
E币几乎得不到了吗?
7
60V耐压制程/SOD123小体积封装/ NU505-D20/D30/D40/D60用于COB灯带
8
瑞盟36V高压高精密运放MS8188,低噪声+零温漂
1
TPT2024.12!新特性!新功能!
2
手机厂商,无牌可打
3
爱回收2024年营收163.3亿元创新高 ,全年GAAP经营利润首次转正
4
为什么DeepSeek能以100多人打造超越大厂的突破?——扁平架构构建蜂窝创新生态
5
技术制高点:万兆以太网量产能力如何奠定美信科技行业话语权?
6
康谋应用 | 基于多传感器融合的海洋数据采集系统
7
【新品解读】直采+异构,看 RFSoC FPGA 开发板 AXW49 如何应对射频信号处理高要求
8
WTV380-8S语音芯片在眼部按摩仪中的创新应用:扩展传感器功能与高性价比的完美融合
1
激光晶圆划片系统的设计
2
MCU最开始一启动后去哪里读代码?
3
深入解析模拟量控制在PLC系统中的应用与实践
4
高速PCB设计时,保护地线要还是不要,这是个问题
5
钽电容在电容界属于什么呢?
6
一文读懂FTU、DTU、TTU、RTU的区别
7
PWM信号中的高次谐波信号
8
车载充电机的组成和原理
9
到PLC在电葫芦控制系统中的核心作用
10
双电机相对于单电机加主减速器或变速箱方面的优势
在线研讨会
助力AI服务器,思瑞浦I3C产品及相关模拟与数模混合产品方案介绍
MAXQ™ Power转换器架构:性能零浪费
多物理场仿真在半导体制程中的应用
迈来芯新一代经济型热成像技术:赋能电力电子过热保护与智能应用温度监控
EE直播间
不一样的热像检测 - 电子产品的热像检测技术要点和案例分享
直播时间:03月26日 10:00
利用高性能源表和强大的软件, 实现半导体参数的测试和分析
直播时间:04月17日 00:00
E聘热招职位
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
只要一个I/O引脚,在几毫秒内测量从微伏到千伏电压
首款原生鸿蒙正式版手机要来了!DeepSeek加持
美议员推动全面禁止中国公民获得美国留学签证
国产GPU独角兽壁仞科技再获融资,上海国资领投
日产汽车重大人事重组,CEO内田诚卸任