社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
IIC Shanghai 2023
2023(第四届)国际 AIoT 生态发展大会
全球 MCU 生态发展大会
第四届临港半导体产业高峰论坛暨司南科技奖颁奖盛典
IIC Shenzhen 2023
第四届中国国际汽车电子高峰论坛
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
登录|注册
芯语
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
首页
热门
专栏作家
电子产业热词
CEO专栏
技术文库
科技头条
专栏入驻
×
提示!
您尚未开通专栏,立即申请专栏入驻
芯语
帖子
博文
用户
芯语
登录
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
EMI
连接器设计和选择的主要EMI/RFI考虑因素是什么?
连接器连接多个电子元件,以在一个或多个系统之间传输电力和信号。在连接器设计中,电磁干扰(EMI)和射频干扰(RFI)是关键挑战,有效减轻其影响可提升设备性能并确保系统稳定运行。选择抗 EMI/RFI 连接器时,需综合考虑屏蔽效能、材料特性和结构设计。例如,金属外壳、导电涂层和多层屏蔽设计能显著降低干扰。遵循 IEC、FCC 等国际标准是确保合规性和性能的基础。此外,定期使用网络分析仪等工具测试和维
线束世界
2025-03-12
237浏览
HDMI时钟EMI问题的高效解决方案
一前言随着信息技术和半导体技术的快速发展,电子产品的类型和功能模块日益多样化,对此要求的传输速率也日益提高。其中时钟频率的不断提升,同时也带来了更多的EMI时钟问题。时钟EMI问题的处理还受到了很多因素制约,这是让许多工程师所头痛的。二时钟EMI问题高效处理方式今天给大家带来一种高效的时钟EMI问题处理方式——展频技术。简单的说展频技术就是通过对尖峰时钟进行调制处理,使其从一个窄带时钟变为一个具有
韬略科技EMC
2025-03-11
91浏览
深度解析抑制EMI的利器--展频技术(6)文末又送书
▼关注公众号:硬件微讲堂▼大家好,我是硬件微讲堂。这是我第113篇原创文章。为避免错过干货知识,欢迎关注公众号回答问题加入免费技术交流群,抱团取暖,共同进步!前段时间在公众号上讨论关于抑制EMI的利器-展频技术:①看图:Buck电源的SW节点波形怎么这么糊?怎么回事?②深度解析抑制EMI的利器--展频技术(干货巨多)③(长视频)实测+波形解读-深度解析EMI展频技术④深度解析抑制EMI的利器--展
硬件微讲堂
2025-02-18
237浏览
快充电源芯片U876X可极大的优化系统EMI性能
快充电源芯片U876X可极大的优化系统EMI性能深/圳/银/联/宝/快充电源芯片U876X产品型号有U8765/U8766,推荐最大输出功率分别为65W/100W,集成高压E-Mode GaN FET,为了保障GaN FET工作的可靠性和高系统效率,芯片内置了高精度、高可靠性的驱动电路,驱动电压为VDRV (典型值 6.2V)。快充电源芯片U876X主要特性:● 集成高压 E-GaN● 集成高压启
开关电源芯片
2025-02-10
112浏览
深度解析抑制EMI的利器--展频技术(5)文末送书,凭本事拿!
▼关注公众号:硬件微讲堂▼大家好,我是硬件微讲堂。这是我第112篇原创文章。为避免错过干货知识,欢迎关注公众号回答问题加入免费技术交流群,抱团取暖,共同进步!前段时间在公众号上讨论关于抑制EMI的利器-展频技术:①看图:Buck电源的SW节点波形怎么这么糊?怎么回事?②深度解析抑制EMI的利器--展频技术(干货巨多)③(长视频)实测+波形解读-深度解析EMI展频技术④深度解析抑制EMI的利器--展
硬件微讲堂
2025-02-10
250浏览
深度解析抑制EMI的利器--展频技术
▼关注公众号:硬件微讲堂▼大家好,我是硬件微讲堂。这是我第109篇原创文章。为避免错过干货知识,欢迎关注公众号回答问题加入免费技术交流群,抱团取暖,共同进步!前段时间在公众号发了一个问题:看图:Buck电源的SW节点波形怎么这么糊?怎么回事?参与讨论的同学比较多,具体各位可以去评论区看。感谢各位的积极参与。一道问题照例,先抛出一道问题:Buck电源的SW节点波形怎么这么模糊?什么原因:视频解答针对
硬件微讲堂
2025-01-13
901浏览
教你几招利用PCB分层堆叠控制EMI辐射
▲ 点击上方蓝字关注我们,不错过任何一篇干货文章!解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从最基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。电源汇流排在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由於电容呈有限频率响应的特性,这使得
电子工程世界
2024-12-18
122浏览
开关电源芯片U2315X优化的ESD/EMI性能
开关电源芯片U2315X优化的ESD/EMI性能芯片的ESD(Electro-Static Discharge,静电放电)性能是指芯片在静电放电事件中的保护能力和可靠性。ESD是电子设备中常见但又极具破坏性的现象,可能导致芯片损坏、系统故障甚至整个设备的瘫痪。因此,ESD性能是芯片可靠性的关键因素之一。开关电源芯片U2315X优化的ESD性能、EMI性能,可提供更有利保护,典型功率表如下:
开关电源芯片
2024-12-13
105浏览
EMI整改容易忽略的角落
一前言在EMI(电磁干扰)整改的历程中,当我们针对某一系列产品完成了多个项目的整改后,面对该系列中某款产品的测试数据异常,通常能够较为准确地预判其可能的问题所在。然而,这并不意味着所有情况都能如此直接判断。EMI问题的根源复杂多样,不仅限于产品的PCB(印刷电路板)设计缺陷。实际上,产品的物理结构以及测试时的摆放方式同样会对EMI测试结果产生显著影响。因此,在进行EMI问题排查时,我们需要采取更为
韬略科技EMC
2024-12-03
147浏览
电感下方要铺铜吗?DC/DC低EMI设计
每个开关电源都是一个宽带噪声源。因此,将汽车电路板网络中的DC/DC 变换器集成到汽车控制单元中,同时仍然满足汽车原始设备制造商(OEM) 的 EMC 要求,是一项很艰巨的任务。通常,来自 DC/DC 变换器和其他高速电路的噪声会通过所连接的电缆辐射,这些电缆为噪声提供了有效的天线路径。为了阻断这种潜在的辐射路径,需要在每个电缆连接点都设置滤波器电路。但是,只有当噪声源的 H场或 E 场没有耦合到
凡亿PCB
2024-11-23
555浏览
EMI接收机测试时,为什么先选用峰值检波,然后再选个别数值超标的点进行准峰值检波?什么时候使用峰值检测呢?
什么是EMI接收机?EMI接收机,即电磁干扰 (Electromagnetic Interference)接收机,是一种用于按收和识别电磁干扰信号的设备。在日常生活中,电子设备和无线通信系统都可能受到外部电磁干扰的影响,这些干扰信号会引起设备性能下降甚至故障。因此,为了保证设备的正常运行,需要使用 EMI接收机进行电磁干扰监测和识别。EMI接收机的工作原理涉及到电磁波的接收、放大、频谱分析等过程。
Keysight射频测试资料分
2024-11-19
523浏览
影响EMI的PCB寄生参数,你都清楚吗?
PCB寄生参数计算:引线电感过孔电感平板电容声明:本文转载自EEDesign公众号,如涉及作品内容、版权和其它问题,请联系工作人员微(13237418207),我们将在第一时间和您对接删除处理!投稿/招聘/广告/课程合作/资源置换 请加微信:1323741820 EMC与电源时钟的“爱恨情仇
凡亿PCB
2024-10-31
533浏览
一款小型打印机EMI整改案例分享
一前言EMC整改过程中,时钟问题是我们经常遇到的EMC难题之一,在前期设计中重点关注并做好相应的处理措施,肯定是最优解的。但是如果前期设计没有注意或者结构原因没办法做最优处理,该怎么办呢?这也是一直困扰很多工程师的问题,处理的手段也没有太多,还得考虑信号完整性。今天给大家分享一个简洁的时钟问题处理方案。二整改案例某客户小型化的标签打印机产品在RE测试过程中测试超标,具体测试数据如下:摸底数据-水平
韬略科技EMC
2024-10-29
305浏览
电源管理icU8607采用CSJitter技术优化系统EMI
电源管理ic U8607采用CS Jitter技术优化系统EMI在缩小开关电源变压器尺寸的过程中,要根据实际需求和成本限制选择合适的方案,以达到最优化的效果。在18~65W适配器设计和制造过程中,可选用深圳银联宝科技最新推出的电源管理ic U8607,它合封第三代半导体GaN FET,最高工作频率130kHz,有利于降低电源尺寸。电源管理ic U8607是一款集成E-GaN的恒压恒流PSR反激功率
开关电源芯片
2024-09-27
619浏览
搞定混合信号的EMI电磁干扰
对更高性能和更高功能集成度的不懈追求,为管理密集混合信号环境中的电磁干扰(EMI)带来了新的挑战。 将模拟、射频和数字电路集成到单个片上系统 (SoC) 或高级封装中,需要能缩小系统尺寸并提高性能的解决方案。然而,这种紧密集成会增加 EMI 风险,因为数字电路会产生噪声,干扰敏感的模拟和射频元件。 Synopsys公司技术产品管理高级总监杨健说:"SoC集成对于大批量消费应用来说是非常理想的,
半导体产业杂谈
2024-09-25
644浏览
详解开关电源的电磁干扰(EMI)防制技术
▲ 点击上方蓝字关注我们,不错过任何一篇干货文章!电源产品在做验证时,经常会遭遇到电磁干扰(EMI)的问题,有时处理起来需花费非常多的时间,许多工程师在对策电磁干扰时也是经验重于理论,知道哪个频段要对策那些组件,但对于理论上的分析却很欠缺。笔者从事开关电源设计多年,希望能藉由之前对策的经验与相关理论基础做个整理,让目前正从事或未来想从事开关电源设计的人员对电磁干扰防制技术能有初步的认识。开关电源的
电子工程世界
2024-09-14
775浏览
低EMI干扰、高EMS抗干扰的充电器芯片U8623
低EMI干扰、高EMS抗干扰的充电器芯片U8623YINLIANBAO因为手机尺寸/重量和电池技术的限制,相比在不增加尺寸/重量的情况下增大电池的容量,提升设备电池的充电效率反而更容易实现。深圳银联宝充电器芯片U8623具有全负载高效率、低空载损耗、低EMI干扰和高EMS抗干扰、极少外围应用元件等优点,可应用在充电器、适配器、电机驱动器等领域。充电器芯片U8623具备恒功率输出模式,当FB脚电平大
开关电源芯片
2024-09-13
605浏览
电源的EMI传导和辐射都超标了,老师傅给了我90种整改方法,果断收藏起来!
点击上方名片关注了解更多大家好,我是王工。如果开关电源EMI总是过不了,快来看看下面这些实用的整改策略吧!EMI传导频段:1MHZ 以内以差模干扰为主整改策略:1、150KHZ-1MHz,以差模为主,1-5MHz,差模和共模共同起作用,5MHz 以后基本上是共模。差模干扰的分容性藕合和感性藕合。一般 1MHZ 以上的干扰是共模,低频段是差摸干扰。用一个电阻串个电容后再并到 Y 电容的引脚上,用示波
硬件笔记本
2024-09-12
1770浏览
开关电源EMI传导辐射都超标了,老师傅给我90种整改方法,不知道有没有留一手!
如果开关电源EMI总是过不了,快来看看下面这些实用的整改策略吧!EMI传导频段:1MHZ 以内以差模干扰为主整改策略:1、150KHZ-1MHz,以差模为主,1-5MHz,差模和共模共同起作用,5MHz 以后基本上是共模。差模干扰的分容性藕合和感性藕合。一般 1MHZ 以上的干扰是共模,低频段是差摸干扰。用一个电阻串个电容后再并到 Y 电容的引脚上,用示波器测电阻两引脚的电压可以估测共模干扰;2、
芯片之家
2024-09-06
868浏览
立琦科技:如何在降压转换器中减少电磁干扰(EMI)
转发一篇立琦的文章,原文链接点击文末左下角“阅读原文”阅 在开关模式降压转换器中,如何缓解电磁干扰(EMI)是一个常见的议题。EMI通常由高频电流流动所引起。本应用笔记首先讨论了由输入电流引起的EMI问题,并提出相对应的解决方案,以及其他更多如何减少EMI的方法。在文末,也会介绍一种简单的EMI测量工具的制作实用指南,以及如何有效利用这些工具进行测试的建议。1 EMI的成因与解
硬件之路学习笔记
2024-08-30
594浏览
[EMI知识充电节]BUCK输入环路和输出环路哪个更重要?
▼关注公众号:工程师看海▼我们常听说电源的输入、输出电容以及电感要紧挨着芯片布局,以降低EMI等问题,如果输入、输出环路布局冲突的话,对于BUCK而言应优先保证输入电容靠近IC,知其然更要知其所以然,那么工程师看海在这里就深入介绍一下:为什么BUCK要优先考虑输入电容布局?以上图为例, BUCK开关电源在一个开关周期内有两个工作状态,分别对应两条电流回路。原文作者:工程师看海状态1:当S1导通、S
工程师看海
2024-08-25
794浏览
磁性元器件EMI
点击上方名片关注了解更多声明:声明:文章来源网络。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。投稿/招聘/推广/宣传 请加微信:woniu26a推荐阅读▼电路设计-电路分析EMC相关文章电子元器件后台回复“加群”,管理员拉你加入同行技术交流群。
硬件笔记本
2024-08-12
559浏览
磁性元器件EMI
欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 920776074高可靠新能源行业顶尖自媒体在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不
电力电子技术与新能源
2024-08-04
523浏览
EMI频谱图的分析方法1
波形图是显示电路电压或电流实时变化的一种图谱,由硬件电子工程师使用示波器直接测量;频谱图是显示电路射频能量在频率上的分布的图谱,由 EMC 工程师借助频谱分析仪测量得到——两种图谱是同一信号在不同观测域上的不同结果,但测量方法和应用上的差异导致了这两种图谱在硬件电路分析和电磁兼容诊断分析互相分立。本文通过对同一信号时域波形与频域频谱的观测和比较,直观演示两者的相关性并将波形参数对频谱的影响实测出
EMC标准
2024-07-14
1073浏览
这样比喻EMI/EMS/EMC,一下就看懂了
欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 920776074高可靠新能源行业顶尖自媒体在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不
电力电子技术与新能源
2024-07-11
711浏览
正在努力加载更多...
广告
今日
新闻
1
美国关税落地,将对中国哪些产业产生影响?
2
2nm量产加速!Rapidus、英特尔传捷报
3
印度不满美国的“对等关税”
4
突发!美国宣布全面征收关税,中方坚决反对
5
复旦大学宣布成功研制全球首款二维半导体芯片 “无极”
6
最高49%!特朗普对多国加征“对等关税”,引发国际社会强烈反对
7
AI爆发将催生“新物种”:EDA/IP企业眼中的新机遇
8
英特尔新战略:AI驱动、软件2.0与代工生态的全面布局
热门
文章排行
1
小米SU7碰撞爆燃致3女生死亡:车辆为SU7标准版,电池未配备电芯倒置技术
快科技
6174
2
新凯来发布6大类31款半导体设备(附产品资料)
芯通社
1933
3
英伟达芯片或遭中国限制!股价暴跌!
半导体前沿
1214
4
近30家SiC/GaN企业集结上海,2025最新技术集中亮相
第三代半导体风向
1185
5
iOS18.4正式版发布:5G-A来了!苹果智能终于支持中文
快科技
1157
6
可控核聚变重大突破!能源革命的终极答案即将来临?
电动车公社
1128
7
DeepSeek塞进小盒子?ESP32微型AI伴侣开发指南!
嵌入式大杂烩
1128
8
雷军发声!遇难者家属:虚伪!
电动知家
1111
9
走进SEMICONChina:半导体产业8大看点和“黑科技”揭秘
DT半导体材料
994
10
李想官宣:理想汽车自研汽车操作系统「理想星环OS」开源
谈思实验室
957
11
《Kimi高效办公》《豆包高效办公》《智能体设计指南》新书发布会成功举办
IT阅读排行榜
930
12
网友拍到小米SU7司机驾驶中睡着,同行车辆连喊三遍“减速”!
快科技
921
13
东旭集团财务造假:被罚17亿元,19人禁入证券市场!
WitDisplay
857
14
林本坚:中国大陆或催生半导体界的“DeepSeek”
芯极速
851
15
台积电举办2nm扩厂典礼:下半年量产,投资超3200亿元!
飙叔科技洞察
848
16
5亿元!方正电机上海电驱工厂即将开工
行家说汽车半导体
840
17
疑已通过审批!特斯拉FSD更名后悄然推送
谈思汽车
771
18
工信部:有条件批准L3级自动驾驶车型生产准入
谈思汽车
735
19
一场交通事故的日志解读,分析小米SU7NOA系统嵌入式技术
美男子玩编程
730
20
国家发改委:批评某些车企
一览众车
690
21
浅谈小米SU7三人死亡事故
铁君
679
22
德州仪器(TI)宣布裁员!
芯极速
665
23
突发!富士康更换CEO
WitDisplay
643
24
1000+前沿展商亮相慕尼黑上海电子生产设备展!直击电子智造产业变革与技术跃迁
线束中国
628
25
传:中芯2025年完成5nm开发
芯极速
600
26
Nature|上海大学等发表环保型蓝光量子点发光二极管突破性研究文章
MEMS
591
27
泡沫正在破灭,苹果找不到新的增长方式
美股研究社
578
28
正式启航!中国低空飞行“载人时代”,解码中国城市空中交通的商业化元年!
飙叔科技洞察
569
29
华为第五界终于来了!任正非力挺,余承东说了两句话
快科技
561
30
中山大学在SAW/BAW传感器方面取得研究进展@IEEEMEMS会议
MEMS
559
广告
最新
评论
更多>>
感谢分享,让我学到了很多理论知识
笨小孩cj
评论文章
2025-04-03
天天挂在嘴边的级联噪声系数公式,是怎么推导来的?
AES11
用户17433...
评论文章
2025-03-31
欧阳明高最新百人会报告PPT(附下载):《电动乘用车发展的新阶段、新挑战与新路径》
资料
文库
帖子
博文
1
IGBT并联使用要点(来源于onsemi)
2
RAG全栈技术从基础到精通 ,打造高精准AI应用
3
现代实用传感器电路-图书
4
新能源电池技术
5
IPC J-STD-001J-CN:中文 2024 焊接的电气和电子组件要求.pdf
6
传感器与信号处理-图书
7
[完结10章]DeepSeek+SpringAI实战AI家庭医生应用
8
多传感器信息融合及应用
9
苏州永创智能科技详解“CMTI测试电源”共模瞬态抗扰度测试方案及标准
10
RC拉普拉斯逆变换计算C上的充电曲线
1
如何去标定光敏电阻使得每一个的灵敏度一样
2
【2025第1期拆解活动】拆解——洞见电子产品设计智慧!
3
这个CAN通讯电路最高能支持的速率是多少?通讯的原理谁...
4
HMD3075国产首款量产型七位半万用表!青岛汉泰开启国产高...
5
宝砾微DCDC降压、DCDC升压、DCDC升降压、数模混合SOC 电源芯片
6
中微半导体发布首款集成RISC-V内核的32位微控制器-ANT32RV56xx
7
PXI8081高精度热电偶采集板卡 24位8通道同步AD模拟量采集 支...
8
【富芮坤FR3068x-C】Micropython播放音乐和LED控制初体验
1
国产车规级控制芯片概述及供应商TOP10
2
探针是否需要对焦:解读探针的工作原理及操作要求
3
仿真驱动、数据自造:巧用合成数据重构智能座舱
4
退火炉的功能及应用
5
智能语音芯片WT588F02B-8S:低功耗设计赋能多元化场景应用
6
白电赛道竞争白热化,美的、海尔、格力发展 “分道扬镳”
7
三星“李在镕之笑”背后的局
8
从新人到骨干:三大思维转变助你职场腾飞
1
控制柜里的谜团:为何多此一举?
2
RC低通滤波器
3
TVS的规格书举例
4
十种主流电机拆解结构全解析
5
晶振的规格书重要参数及晶振计算
6
终于有人把欧姆龙PLC通信协议说清楚了
7
接口电路防护设计要点解析
8
轴流风机:变频器的"死对头"
9
PCB盘中孔到底能不能打?
10
功率放大器ADS仿真实例
在线研讨会
MAXQ™ Power转换器架构:性能零浪费
多物理场仿真在半导体制程中的应用
迈来芯新一代经济型热成像技术:赋能电力电子过热保护与智能应用温度监控
ADI 应用于电池管理系统 (BMS) 的电芯监测解决方案
EE直播间
精准捕获瞬态信号,掌控复杂射频环境 – 实时频谱分析与录制回放
直播时间:04月10日 10:00
利用高性能源表和强大的软件, 实现半导体参数的测试和分析
直播时间:04月17日 10:00
E聘热招职位
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
美国关税落地,将对中国哪些产业产生影响?
2nm量产加速!Rapidus、英特尔传捷报
印度不满美国的“对等关税”
突发!美国宣布全面征收关税,中方坚决反对
复旦大学宣布成功研制全球首款二维半导体芯片 “无极”