深度好文!30分钟玩转C语言指针

嵌入式ARM 2021-12-20 12:00


说到指针,估计还是有很多小伙伴都还是云里雾里的,有点“知其然,而不知其所以然”。但是,不得不说,学了指针,C语言才能算是入门了。指针是C语言的「精华」,可以说,对对指针的掌握程度,「直接决定」了你C语言的编程能力。


在讲指针之前,我们先来了解下变量在「内存」中是如何存放的。

在程序中定义一个变量,那么在程序编译的过程中,系统会根据你定义变量的类型来分配「相应尺寸」的内存空间。那么如果要使用这个变量,只需要用变量名去访问即可。

通过变量名来访问变量,是一种「相对安全」的方式。因为只有你定义了它,你才能够访问相应的变量。这就是对内存的基本认知。但是,如果光知道这一点的话,其实你还是不知道内存是如何存放变量的,因为底层是如何工作的,你依旧不清楚。

那么如果要继续深究的话,你就需要把变量在内存中真正的样子是什么搞清楚。内存的最小索引单元是1字节,那么你其实可以把内存比作一个超级大的「字符型数组」。在上一节我们讲过,数组是有下标的,我们是通过数组名和下标来访问数组中的元素。那么内存也是一样,只不过我们给它起了个新名字:地址。每个地址可以存放「1字节」的数据,所以如果我们需要定义一个整型变量,就需要占据4个内存单元。

那么,看到这里你可能就明白了:其实在程序运行的过程中,完全不需要变量名的参与。变量名只是方便我们进行代码的编写和阅读,只有程序员和编译器知道这个东西的存在。而编译器还知道具体的变量名对应的「内存地址」,这个是我们不知道的,因此编译器就像一个桥梁。当读取某一个变量的时候,编译器就会找到变量名所对应的地址,读取对应的值。

初识指针和指针变量

那么我们现在就来切入正题,指针是个什么东西呢?

所谓指针,就是内存地址(下文简称地址)。C语言中设立了专门的「指针变量」来存储指针,和「普通变量」不一样的是,指针变量存储的是「地址」

定义指针

指针变量也有类型,实际上取决于地址指向的值的类型。那么如何定义指针变量呢:

很简单:类型名* 指针变量名

char* pa;//定义一个字符变量的指针,名称为pa
int* pb;//定义一个整型变量的指针,名称为pb
float* pc;//定义一个浮点型变量的指针,名称为pc

注意,指针变量一定要和指向的变量的类型一样,不然类型不同可能在内存中所占的位置不同,如果定义错了就可能导致出错。

取地址运算符和取值运算符

获取某个变量的地址,使用取地址运算符&,如:

char* pa = &a;
int* pb = &f;

如果反过来,你要访问指针变量指向的数据,那么你就要使用取值运算符*,如:

printf("%c, %d\n", *pa, *pb);

这里你可能发现,定义指针的时候也使用了*,这里属于符号的「重用」,也就是说这种符号在不同的地方就有不同的用意:在定义的时候表示「定义一个指针变量」,在其他的时候则用来「获取指针变量指向的变量的值」

直接通过变量名来访问变量的值称之为直接访问,通过指针这样的形式访问称之为间接访问,因此取值运算符有时候也成为「间接运算符」

比如:

//Example 01
//代码来源于网络,非个人原创
#include 
int main(void)
{
    char a = 'f';
    int f = 123;
    char* pa = &a;
    int* pf = &f;
    
    printf("a = %c\n", *pa);
    printf("f = %d\n", *pf);
    
    *pa = 'c';
    *pf += 1;
    
    printf("now, a = %c\n", *pa);
    printf("now, f = %d\n", *pf);
    
    printf("sizeof pa = %d\n"sizeof(pa));
    printf("sizeof pf = %d\n"sizeof(pf));
    
    printf("the addr of a is: %p\n", pa);
    printf("the addr of f is: %p\n", pf);
    
    return 0;
}

程序实现如下:

//Consequence 01
a = f
f = 123
now, a = c
now, f = 124
sizeof pa = 4
sizeof pf = 4
the addr of a is: 00EFF97F
the addr of f is: 00EFF970

避免访问未初始化的指针

void f()
{
    int* a;
    *a = 10;
}

像这样的代码是十分危险的。因为指针a到底指向哪里,我们不知道。就和访问未初始化的普通变量一样,会返回一个「随机值」。但是如果是在指针里面,那么就有可能覆盖到「其他的内存区域」,甚至可能是系统正在使用的「关键区域」,十分危险。不过这种情况,系统一般会驳回程序的运行,此时程序会被「中止」「报错」。要是万一中奖的话,覆盖到一个合法的地址,那么接下来的赋值就会导致一些有用的数据被「莫名其妙地修改」,这样的bug是十分不好排查的,因此使用指针的时候一定要注意初始化。

指针和数组

有些读者可能会有些奇怪,指针和数组又有什么关系?这俩货明明八竿子打不着井水不犯河水。别着急,接着往下看,你的观点有可能会改变。

数组的地址

我们刚刚说了,指针实际上就是变量在「内存中的地址」,那么如果有细心的小伙伴就可能会想到,像数组这样的一大摞变量的集合,它的地址是啥呢?

我们知道,从标准输入流中读取一个值到变量中,用的是scanf函数,一般貌似在后面都要加上&,这个其实就是我们刚刚说的「取地址运算符」。如果你存储的位置是指针变量的话,那就不需要。

//Example 02
int main(void)
{
    int a;
    int* p = &a;
    
    printf("请输入一个整数:");
    scanf("%d", &a);//此处需要&
    printf("a = %d\n", a);
    
    printf("请再输入一个整数:");
    scanf("%d", p);//此处不需要&
    printf("a = %d\n", a);
    
    return 0;
}

程序运行如下:

//Consequence 02
请输入一个整数:1
a = 1
请再输入一个整数:2
a = 2

在普通变量读取的时候,程序需要知道这个变量在内存中的地址,因此需要&来取地址完成这个任务。而对于指针变量来说,本身就是「另外一个」普通变量的「地址信息」,因此直接给出指针的值就可以了。

试想一下,我们在使用scanf函数的时候,是不是也有不需要使用&的时候?就是在读取「字符串」的时候:

//Example 03
#include 
int main(void)
{
    char url[100];
    url[99] = '\0';
    printf("请输入TechZone的域名:");
    scanf("%s", url);//此处也不用&
    printf("你输入的域名是:%s\n", url);
    return 0;
}

程序执行如下:

//Consequence 03
请输入TechZone的域名:www.techzone.ltd
你输入的域名是:www.techzone.ltd

因此很好推理:数组名其实就是一个「地址信息」,实际上就是数组「第一个元素的地址」。咱们试试把第一个元素的地址和数组的地址做个对比就知道了:

//Example 03 V2
#include 
int main(void)
{
    char url[100];
    printf("请输入TechZone的域名:");
    url[99] = '\0';
    scanf("%s", url);
    printf("你输入的域名是:%s\n", url);

    printf("url的地址为:%p\n", url);
    printf("url[0]的地址为:%p\n", &url[0]);

    if (url == &url[0])
    {
        printf("两者一致!");
    }
    else
    {
        printf("两者不一致!");
    }
    return 0;
}

程序运行结果为:

//Comsequense 03 V2
请输入TechZone的域名:www.techzone.ltd
你输入的域名是:www.techzone.ltd
url的地址为:0063F804
url[0]的地址为:0063F804
两者一致!

这么看,应该是实锤了。那么数组后面的元素也就是依次往后放置,有兴趣的也可以自己写代码尝试把它们输出看看。

指向数组的指针

刚刚我们验证了数组的地址就是数组第一个元素的地址。那么指向数组的指针自然也就有两种定义的方法:

...
char* p;
//方法1
p = a;
//方法2
p = &a[0];

指针的运算

当指针指向数组元素的时候,可以对指针变量进行「加减」运算,+n表示指向p指针所指向的元素的「下n个元素」-n表示指向p指针所指向的元素的「上n个元素」。并不是将地址加1。

如:

//Example 04
#include 
int main(void)
{
    int a[] = { 1,2,3,4,5 };
    int* p = a;
    printf("*p = %d, *(p+1) = %d, *(p+2) = %d\n", *p, *(p + 1), *(p + 2));
    printf("*p -> %p, *(p+1) -> %p, *(p+2) -> %p\n", p, p + 1, p + 2);
    return 0;
}

执行结果如下:

//Consequence 04
*p = 1, *(p+1) = 2, *(p+2) = 3
*p -> 00AFF838, *(p+1) -> 00AFF83C, *(p+2) -> 00AFF840

有的小伙伴可能会想,编译器是怎么知道访问下一个元素而不是地址直接加1呢?

其实就在我们定义指针变量的时候,就已经告诉编译器了。如果我们定义的是整型数组的指针,那么指针加1,实际上就是加上一个sizeof(int)的距离。相对于标准的下标访问,使用指针来间接访问数组元素的方法叫做指针法

其实使用指针法来访问数组的元素,不一定需要定义一个指向数组的单独的指针变量,因为数组名自身就是指向数组「第一个元素」的指针,因此指针法可以直接作用于数组名:

...
printf("p -> %p, p+1 -> %p, p+2 -> %p\n", a, a+1, a+2);
printf("a = %d, a+1 = %d, a+2 = %d", *a, *(a+1), *(a+2));
...

执行结果如下:

p -> 00AFF838, p+1 -> 00AFF83C, p+2 -> 00AFF840
b = 1, b+1 = 2, b+2 = 3

现在你是不是感觉,数组和指针有点像了呢?不过笔者先提醒,数组和指针虽然非常像,但是绝对「不是」一种东西。

甚至你还可以直接用指针来定义字符串,然后用下标法来读取每一个元素:

//Example 05
//代码来源于网络
#include 
#include 
int main(void)
{
    char* str = "I love TechZone!";
    int i, length;
    
    length = strlen(str);
    
    for (i = 0; i < length, i++)
    {
        printf("%c", str[i]);
    }
    printf("\n");
    
    return 0;
}

程序运行如下:

//Consequence 05
I love TechZone!

在刚刚的代码里面,我们定义了一个「字符指针」变量,并且初始化成指向一个字符串。后来的操作,不仅在它身上可以使用「字符串处理函数」,还可以用「下标法」访问字符串中的每一个字符。

当然,循环部分这样写也是没毛病的:

...
for (i = 0, i < length, i++)
{
    printf("%c", *(str + i));
}

这就相当于利用了指针法来读取。

指针和数组的区别

刚刚说了许多指针和数组相互替换的例子,可能有的小伙伴又开始说:“这俩货不就是一个东西吗?”

随着你对指针和数组越来越了解,你会发现,C语言的创始人不会这么无聊去创建两种一样的东西,还叫上不同的名字。指针和数组终究是「不一样」的。

比如笔者之前看过的一个例子:

//Example 06
//代码来源于网络
#include 
int main(void)
{
    char str[] = "I love TechZone!";
    int count = 0;
    
    while (*str++ != '\0')
    {
        count++;
    }
    printf("总共有%d个字符。\n", count);
    
    return 0;
}

当编译器报错的时候,你可能会开始怀疑你学了假的C语言语法:

//Error in Example 06
错误(活动) E0137 表达式必须是可修改的左值
错误 C2105 “++”需要左值

我们知道,*str++ != ‘\0’是一个复合表达式,那么就要遵循「运算符优先级」来看。具体可以回顾《C语言运算符优先级及ASCII对照表》。

str++*str的优先级「更高」,但是自增运算符要在「下一条语句」的时候才能生效。所以这个语句的理解就是,先取出str所指向的值,判断是否为\0,若是,则跳出循环,然后str指向下一个字符的位置。

看上去貌似没啥毛病,但是,看看编译器告诉我们的东西:表达式必须是可修改的左值

++的操作对象是str,那么str到底是不是「左值」呢?

如果是左值的话,那么就必须满足左值的条件。

  1. 拥有用于识别和定位一个存储位置的标识符
  2. 存储值可修改

第一点,数组名str是可以满足的,因为数组名实际上就是定位数组第一个元素的位置。但是第二点就不满足了,数组名实际上是一个地址,地址是「不可以」修改的,它是一个常量。如果非要利用上面的思路来实现的话,可以将代码改成这样:

//Example 06 V2
//代码来源于网络
#include 
int main(void)
{
    char str[] = "I love TechZone!";
    char* target = str;
    int count = 0;
    
    while (*target++ != '\0')
    {
        count++;
    }
    printf("总共有%d个字符。\n", count);
    
    return 0;
}

这样就可以正常执行了:

//Consequence 06 V2
总共有16个字符。

这样我们就可以得出:数组名只是一个「地址」,而指针是一个「左值」

指针数组?数组指针?

看下面的例子,你能分辨出哪个是指针数组,哪个是数组指针吗?

int* p1[5];
int(*p2)[5];

单个的我们都可以判断,但是组合起来就有些难度了。

答案:

int* p1[5];//指针数组
int(*p2)[5];//数组指针

我们挨个来分析。

指针数组

数组下标[]的优先级是最高的,因此p1是一个有5个元素的「数组」。那么这个数组的类型是什么呢?答案就是int*,是「指向整型变量的指针」。因此这是一个「指针数组」

那么这样的数组应该怎么样去初始化呢?

你可以定义5个变量,然后挨个取地址来初始化。

不过这样太繁琐了,但是,并不是说指针数组就没什么用。

比如:

//Example 07
#include 
int main(void)
{
    char* p1[5] = {
        "人生苦短,我用Python。",
        "PHP是世界上最好的语言!",
        "One more thing...",
        "一个好的程序员应该是那种过单行线都要往两边看的人。",
        "C语言很容易让你犯错误;C++看起来好一些,但当你用它时,你会发现会死的更惨。"
    };
    int i;
    for (i = 0; i < 5; i++)
    {
        printf("%s\n", p1[i]);
    }
    return 0;
}

结果如下:

//Consequence 07
人生苦短,我用Python。
PHP是世界上最好的语言!
One more thing...
一个好的程序员应该是那种过单行线都要往两边看的人。
C语言很容易让你犯错误;C++看起来好一些,但当你用它时,你会发现会死的更惨。

这样是不是比二维数组来的更加直接更加通俗呢?

数组指针

()[]在优先级里面属于「同级」,那么就按照「先后顺序」进行。

int(*p2)p2定义为「指针」, 后面跟随着一个5个元素的「数组」p2就指向这个数组。因此,数组指针是一个「指针」,它指向的是一个数组。

但是,如果想对数组指针初始化的时候,千万要小心,比如:

//Example 08
#include 
int main(void)
{
    int(*p2)[5] = {12345};
    int i;
    for (i = 0; i < 5; i++)
    {
        printf("%d\n", *(p2 + i));
    }
    return 0;
}

Visual Studio 2019报出以下的错误:

//Error and Warning in Example 08
错误(活动) E0146 初始值设定项值太多
错误 C2440 “初始化”: 无法从“initializer list”转换为“int (*)[5]”
警告 C4477 “printf”: 格式字符串“%d”需要类型“int”的参数,但可变参数 1 拥有了类型“int *”

这其实是一个非常典型的错误使用指针的案例,编译器提示说这里有一个「整数」赋值给「指针变量」的问题,因为p2归根结底还是指针,所以应该给它传递一个「地址」才行,更改一下:

//Example 08 V2
#include 
int main(void)
{
    int temp[5] = {12345};
    int(*p2)[5] = temp;
    int i;
    for (i = 0; i < 5; i++)
    {
        printf("%d\n", *(p2 + i));
    }
    return 0;
}
//Error and Warning in Example 08 V2
错误(活动) E0144 "int *" 类型的值不能用于初始化 "int (*)[5]" 类型的实体
错误 C2440 “初始化”: 无法从“int [5]”转换为“int (*)[5]”
警告 C4477 “printf”: 格式字符串“%d”需要类型“int”的参数,但可变参数 1 拥有了类型“int *”

可是怎么还是有问题呢?

我们回顾一下,指针是如何指向数组的。

int temp[5] = {12345};
int* p = temp;

我们原本以为,指针p是指向数组的指针,但是实际上「并不是」。仔细想想就会发现,这个指针实际上是指向的数组的「第一个元素」,而不是指向数组。因为数组里面的元素在内存中都是挨着个儿存放的,因此只需要知道第一个元素的地址,就可以访问到后面的所有元素。

但是,这么来看的话,指针p指向的就是一个「整型变量」的指针,并不是指向「数组」的指针。而刚刚我们用的数组指针,才是指向数组的指针。因此,应该将「数组的地址」传递给数组指针,而不是将第一个元素的地址传入,尽管它们值相同,但是「含义」确实不一样:

//Example 08 V3
//Example 08 V2
#include 
int main(void)
{
    int temp[5] = {12345};
    int(*p2)[5] = &temp;//此处取地址
    int i;
    for (i = 0; i < 5; i++)
    {
        printf("%d\n", *(*p2 + i));
    }
    return 0;
}

程序运行如下:

//Consequence 08
1
2
3
4
5

指针和二维数组

在上一节《C语言之数组》我们讲过「二维数组」的概念,并且我们也知道,C语言的二维数组其实在内存中也是「线性存放」的。

假设我们定义了:int array[4][5]

array

array作为数组的名称,显然应该表示的是数组的「首地址」。由于二维数组实际上就是一维数组的「线性拓展」,因此array应该就是指的指向包含5个元素的数组的指针

如果你用sizeof()去测试arrayarray+1的话,就可以测试出来这样的结论。

*(array+1)

首先从刚刚的问题我们可以得出,array+1同样也是指的指向包含5个元素的数组的指针,因此*(array+1)就是相当于array[1],而这刚好相当于array[1][0]的数组名。因此*(array+1)就是指第二行子数组的第一个元素的地址。

*(*(array+1)+2)

有了刚刚的结论,我们就不难推理出,这个实际上就是array[1][2]。是不是感觉非常简单呢?

总结一下,就是下面的这些结论,记住就好,理解那当然更好:

*(array + i) == array[i]
*(*(array + i) + j) == array[i][j]
*(*(*(array + i) + j) + k) == array[i][j][k]
...

数组指针和二维数组

我们在上一节里面讲过,在初始化二维数组的时候是可以偷懒的:

int array[][3] = {
    {123},
    {456}
};

刚刚我们又说过,定义一个数组指针是这样的:

int(*p)[3];

那么组合起来是什么意思呢?

int(*p)[3] = array;

通过刚刚的说明,我们可以知道,array是指向一个3个元素的数组的「指针」,所以这里完全可以将array的值赋值给p

其实C语言的指针非常灵活,同样的代码用不同的角度去解读,就可以有不同的应用。

那么如何使用指针来访问二维数组呢?没错,就是使用「数组指针」

//Example 09
#include 
int main(void)
{
    int array[3][4] = {
        {0123},
        {4567},
        {891011}
    };
    int(*p)[4];
    int i, j;
    p = array;
    for (i = 0, i < 3, i++)
    {
        for (j = 0, j < 4, j++)
        {
            printf("%2d ", *(*(p+i) + j)); 
        }
        printf("\n");
    }
    return 0;
}

运行结果:

//Consequence 09
0 1 2 3
4 5 6 7
8 9 10 11

void指针

void实际上是无类型的意思。如果你尝试用它来定义一个变量,编译器肯定会「报错」,因为不同类型所占用的内存有可能「不一样」。但是如果定义的是一个指针,那就没问题。void类型中指针可以指向「任何一个类型」的数据,也就是说,任何类型的指针都可以赋值给void指针。

将任何类型的指针转换为void是没有问题的。但是如果你要反过来,那就需要「强制类型转换」。此外,不要对void指针「直接解引用」,因为编译器其实并不知道void指针会存放什么样的类型。

//Example 10
#include 
int main(void)
{
    int num = 1024;
    int* pi = #
    char* ps = "TechZone";
    void* pv;
    
    pv = pi;
    printf("pi:%p,pv:%p\n", pi, pv);
    printf("*pv:%d\n", *pv);
    
    pv = ps;
    printf("ps:%p,pv:%p\n", ps, pv);
    printf("*pv:%s\n", *pv);
}

这样会报错:

//Error in Example 10
错误 C2100 非法的间接寻址
错误 C2100 非法的间接寻址

如果一定要这么做,那么可以用「强制类型转换」

//Example 10 V2
#include 
int main(void)
{
    int num = 1024;
    int* pi = #
    char* ps = "TechZone";
    void* pv;

    pv = pi;
    printf("pi:%p,pv:%p\n", pi, pv);
    printf("*pv:%d\n", *(int*)pv);

    pv = ps;
    printf("ps:%p,pv:%p\n", ps, pv);
    printf("*pv:%s\n", pv);
}

当然,使用void指针一定要小心,由于void指针几乎可以「通吃」所有类型,所以间接使得不同类型的指针转换变得合法,如果代码中存在不合理的转换,编译器也不会报错。

因此,void指针能不用则不用,后面讲函数的时候,还可以解锁更多新的玩法。

NULL指针

在C语言中,如果一个指针不指向任何数据,那么就称之为「空指针」,用「NULL」来表示。NULL其实是一个宏定义:

#define NULL ((void *)0)

在大部分的操作系统中,地址0通常是一个「不被使用」的地址,所以如果一个指针指向NULL,就意味着不指向任何东西。为什么一个指针要指向NULL呢?

其实这反而是一种比较指的推荐的「编程风格」——当你暂时还不知道该指向哪儿的时候,就让它指向NULL,以后不会有太多的麻烦,比如:

//Example 11
#include 
int main(void)
{
    int* p1;
    int* p2 = NULL;
    printf("%d\n", *p1);
    printf("%d\n", *p2);
    return 0;
}

第一个指针未被初始化。在有的编译器里面,这样未初始化的变量就会被赋予「随机值」。这样指针被称为「迷途指针」「野指针」或者「悬空指针」。如果后面的代码对这类指针解引用,而这个地址又刚好是合法的话,那么就会产生莫名其妙的结果,甚至导致程序的崩溃。因此养成良好的习惯,在暂时不清楚的情况下使用NULL,可以节省大量的后期调试的时间。

指向指针的指针

开始套娃了。其实只要你理解了指针的概念,也就没什么大不了的。

//Example 12
#include 
int main(void)
{
    int num = 1;
    int* p = #
    int** pp = &p;
    
    printf("num: %d\n", num);
    printf("*p: %d\n", *p);
    printf("**p: %d\n", **pp);
    printf("&p: %p, pp: %p\n", &p, pp);
    printf("&num: %p, p: %p, *pp: %p\n", &num, p, *pp);
    return 0;
}

程序结果如下:

//Consequence 12
num: 1
*p: 1
**p: 1
&p: 004FF960, pp: 004FF960
&num: 004FF96C, p: 004FF96C, *pp: 004FF96C

当然你也可以无限地套娃,一直指下去。不过这样会让代码可读性变得「很差」,过段时间可能你自己都看不懂你写的代码了。

指针数组和指向指针的指针

那么,指向指针的指针有什么用呢?

它可不是为了去创造混乱代码,在一个经典的实例里面,就可以体会到它的用处:

char* Books[] = {
    "《C专家编程》",
    "《C和指针》",
    "《C的陷阱与缺陷》",
    "《C Primer Plus》",
    "《Python基础教程(第三版)》"
};

然后我们需要将这些书进行分类。我们发现,其中有一本是写Python的,其他都是C语言的。这时候指向指针的指针就派上用场了。首先,我们刚刚定义了一个指针数组,也就是说,里面的所有元素的类型「都是指针」,而数组名却又可以用指针的形式来「访问」,因此就可以使用「指向指针的指针」来指向指针数组:

...
char** Python;
char** CLang[4];

Python = &Books[5];
CLang[0] = &Books[0];
CLang[1] = &Books[1];
CLang[2] = &Books[2];
CLang[3] = &Books[3];
...

因为字符串的取地址值实际上就是其「首地址」,也就是一个「指向字符指针的指针」,所以可以这样赋值。

这样,我们就利用指向指针的指针完成了对书籍的分类,这样既避免了浪费多余的内存,而且当其中的书名要修改,只需要改一次即可,代码的灵活性和安全性都得到了提升。

常量和指针

常量,在我们目前的认知里面,应该是这样的:

520, 'a'

或者是这样的:

#define MAX 1000
#define B 'b'

常量和变量最大的区别,就是前者「不能够被修改」,后者可以。那么在C语言中,可以将变量变成像具有常量一样的特性,利用const即可。

const int max = 1000;
const char a = 'a';

const关键字的作用下,变量就会「失去」本来具有的可修改的特性,变成“只读”的属性。

指向常量的指针

强大的指针当然也是可以指向被const修饰过的变量,但这就意味着「不能通过」指针来修改它所引用的值。总结一下,就是以下4点:

  1. 指针可以修改为指向不同的变量
  2. 指针可以修改为指向不同的常量
  3. 可以通过解引用来读取指针指向的数据
  4. 不可以通过解引用来修改指针指向的数据

常量指针

指向非常量的常量指针

指针本身作为一种「变量」,也是可以修改的。因此,指针也是可以被const修饰的,只不过位置稍稍「发生了点变化」

...
intconst p = #
...

这样的指针有如下的特性:

  1. 指针自身不能够被修改
  2. 指针指向的值可以被修改

指向常量的常量指针

在定义普通变量的时候也用const修饰,就得到了这样的指针。不过由于限制太多,一般很少用到:

...
int num = 100;
const int cnum = 200;
const intconst p = &cnum;
...


END

作者:Harris Wilde
来源:www.techzone.ltd/post/CPointer

版权归原作者所有,如有侵权,请联系删除。

推荐阅读
单片机ADC常用的十大滤波算法
美国核弹发射井的软件50年没有更新?
一个月薪12000的北京程序员的真实生活

→点关注,不迷路←
嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦